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https://kevinjkircher.com

What are DERs?



What are Distributed Energy Resources (DERs)?

controllable electrical devices that plug in at the edge of the grid

DOE Loan Programs Office: Posters
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https://www.energy.gov/lpo/posters#vpp

Color Key:
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https://en.wikipedia.org/wiki/Electrical_grid

Solar photovoltaics
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Getty Images; Solar Talk: Solar panel direction; Dan's Diary: A Year of Solar Data;
Lee et al. (2017): Distributed Rate Control for Smart Solar Arrays
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https://energytalk.co.za/t/solar-panel-direction-east-west-vs-north/161?page=2
http://dvschroeder.blogspot.com/2016/09/a-year-of-solar-data.html
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Batteries
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Getty Images; BloombergNEF: Lithium-ion battery prices
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https://about.bnef.com/blog/lithium-ion-battery-pack-prices-rise-for-first-time-to-an-average-of-151-kwh/

Electric vehicles

Y

Alexeenko et al. (2023): Achieving reliable coordination of residential plug-in electric
vehicle charging; Pew Research Center: How Americans view EVs
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https://www.pewresearch.org/short-reads/2023/07/13/how-americans-view-electric-vehicles/

Heat pumps and air conditioners
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Elephant Energy: Guide to Cold Climate Heat Pumps; ACHR News: NYC's ‘Clean
Heat For All Challenge’

7/32


https://elephantenergy.com/ultimate-guide-to-cold-climate-heat-pumps/
https://www.achrnews.com/articles/147122-midea-heat-pumps-to-power-nycs-clean-heat-for-all-challenge
https://www.achrnews.com/articles/147122-midea-heat-pumps-to-power-nycs-clean-heat-for-all-challenge

Thermal storage and water heaters

Green Energy Times: Electric Thermal Storage; MA Clean Energy Center: Heat pump
water heaters
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https://www.greenenergytimes.org/2022/02/electric-thermal-storage-heating/
https://goclean.masscec.com/clean-energy-solutions/heat-pump-water-heater/
https://goclean.masscec.com/clean-energy-solutions/heat-pump-water-heater/

Why study DERs?



Why study DERs?

we must reduce greenhouse gas emissions at speed and scale

DERs will feature prominently in energy transitions

DER adoption is already taking off

good design and control can make DERs much more valuable
© improve user experiences
¢ deepen emission reductions
¢ reduce installation and operating costs
o unlock participation in (& revenue from) power grid operations
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Humans have changed the climate

United States Billion-Dollar Disaster Events 1980-2024 (CPI-Adjusted)
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increased frequency and severity of storms, droughts, wildfires,

NOAA (2023): Billion-Dollar Weather and Climate Disasters
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https://www.ncei.noaa.gov/access/billions/summary-stats

We must cut emissions 80% in the next 10 years

“By 2035, emissions need to decline by 80% in advanced economies
and 60% in emerging market and developing economies compared to
the 2022 level.”

International Energy Agency: Net Zero Roadmap (2023 Update)
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https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach

Annual greenhouse gas emissions
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Annual greenhouse gas emissions
(Million tonnes [Mt] of CO2 equivalent)
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Annual greenhouse gas emissions

United States agriculture
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Annual greenhouse gas emissions
(Million tonnes [Mt] of CO2 equivalent)
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Annual greenhouse gas emissions
(Million tonnes [Mt] of CO2 equivalent)
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A two-step strategy for deep decarbonization

United States gross emissions in 2022
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1. Decarbonize electricity generation

With clean electricity
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Total: 4770 Mt (25% reduction)
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2. Electrify light-duty vehicles. . .

With clean electricity and electric vehicles
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2. Electrify light-duty vehicles & space/water/process heat

With clean electricity and electric vehicles/heat
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Most new electrical capacity is now wind, solar, or batteries

Annual U.S. electric-generating capacity additions (2000-2023)
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Energy Information Administration: Today in Energy (March 6, 2023)
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https://www.eia.gov/todayinenergy/detail.php?id=55719

Electric vehicle sales are growing quickly

Quarterly light-duty vehicle sales by powertrain, United States (2014-2023)
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Energy Information Administration: Today in Energy (September 7, 2023)
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https://www.eia.gov/todayinenergy/detail.php?id=60321

Heat pump sales have outpaced gas furnaces

== Heat pump sales == Gas furnace sales
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Canary Media: Americans bought more heat pumps than gas furnaces last year
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https://www.canarymedia.com/articles/heat-pumps/chart-americans-bought-more-heat-pumps-than-gas-furnaces-last-year

Class outline



Modeling and simulation

e review of linear differential equations

e introduction to linear dynamical systems

e (semi-)physical models of and data sources for
batteries and electric vehicles

buildings

heat pumps and air conditioners

thermal storage and water heaters

solar photovoltaics

S 0000
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Optimization

e convex sets and functions

e convex optimization problems

disciplined convex programming

applications to DER design, operation, model fitting, ...
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e open-loop optimal control
e model predictive control
e model-free predictive control via behavioral systems theory

e other topics of interest? reinforcement learning, co-design, ...
e applications to DER operation

¢ reducing energy costs
¢ reducing pollution
o providing reliability services to the power grid
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Supervised machine learning

e brief introduction to machine learning
o predictors
¢ validation
o features
© empirical risk minimization
o regularization
e DER applications

© time-series forecasting
© system identification
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Class policies



ordinary differential equations

linear algebra

programming in Matlab, Python, or Julia

not required, but may enhance appreciation:
© optimization
¢ control systems
© probability and statistics
¢ machine learning
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Homework

e 20% of grade

e ~8 problem sets with a mix of math and coding
e done individually or in teams

e everyone submits their own write-up

e outside resources are okay, but you must cite them
(to really learn, try homework with no outside help)

e homework front-loaded in first ~half of semester

e second ~half: focus on semester projects
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30% of grade
take-home over 24 hours

taken ~halfway through semester

no final exam

28 /32



Semester project

e 50% of grade
e done individually or in teams of up to 4

e each team gives one ~6 minute idea pitch

o one presenter only (but whole team helps prepare)
o whole team fields questions for ~4 minutes

e cach team gives one ~12 minute conference-style talk

© one presenter only (but whole team helps prepare)
& whole team fields questions for ~8 minutes

e each team writes one ~6 page conference-style final paper

e cach team member verbally assesses their own contributions
(in a meeting with me and their team)
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e Kevin's website

¢ download lecture slides and videos
¢ download homework assignments and midterm

e Gradescope

¢ upload completed homeworks and midterm
© view grades
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https://kevinjkircher.com
https://www.gradescope.com/courses/946894

Online participation

e view lecture slides and videos whenever
(or join class in real time via Zoom if you prefer)

e upload homeworks and midterm when in-person class does
e join Zoom office hours if helpful
e work remotely with project team (or work alone if you prefer)

e join Zoom for your team's project presentations
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Online survey

please take two minutes to tell us a bit about yourself
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https://purdue.ca1.qualtrics.com/jfe/form/SV_7Pqv9Pr1W6EQpVA
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