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Continuous-time linear dynamical systems



A continuous-time linear dynamical system (LDS)

dx(t)
dt

= A(t)x(t) + B(t)u(t) + w(t)

t € R denotes time

x(t) € R™ is the state

u(t) € R™ is the action or control
w(t) € R™ is the disturbance

A(t) € R™*™ is the dynamics matrix

B(t) € R™*™ is the action matrix or control matrix
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A continuous-time LDS with imperfect observations

d);(tt) _ A(t)X(t) + B(t)u(t) + W(t)

y(t) = C()x(¢t) + D(t)u(t) + v(t)

€ R" is the noise

t
C(t) € R™*™ is the observation matrix
D(t) € R™*" is the feedthrough matrix

e y(t) € R™ is the observation or output
v(t)
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Common simplifications

e time-invariant: A, B, C, and D are independent of t
e single-input, single-output: n, =n, =1

no feedthrough: D(t) = 0 for all ¢

perfectly observed: y(t) = x(t)

deterministic: w(t) =0 and v(t) =0 for all ¢
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Linearization



Reminder: Linearizing scalar-valued functions of scalars

e suppose nonlinear f : R — R is differentiable at X € R

e Taylor's theorem: if x is near X, then f(x) is very near

F(R) + F(R)(x — %)
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Linearizing vector-valued functions of vectors

e suppose nonlinear f : R” — R™ is differentiable at X € R”

e Taylor's theorem: if x is near X, then f(x) is very near

F(R) + Dr(R)(x = %)

where
ofi ofi
Ox1 % Oxp %
D%)=| | ermen
Ofm Ofm
Ox1 % OXn %

is the derivative (Jacobian) matrix of f at %
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Linearizing dynamical systems

e consider the nonlinear vector ODE

dx(t)
= f(x(t), u(t), w(t))

with dynamics function f : R™ x R™ x R™ — R"™
e suppose at each t, X(t), d(t), and w(t) satisfy

dR(t) _ oo arey o
= f(R(t), a(t), w(t))

(we call X, &, and w nominal trajectories)

e define the perturbations

5.(t) = x(£) = £(1), Su(t) = u(t) — (t), 8 (t) = w(t) — i(t)



Linearizing dynamical systems (continued)

o if (x(t),u(t), w(t)) =~ (X(t), 4(t), w(t)), then
dox(t) _ dx(t)  dx(1)

dt  dt dt
= F(x(8). u(e), w(t) — F(R(8). 6(2), (1))
~ A(£)0.(t) + B(£)3(1) + G(1)3(2)
where of;
i(t) Oxj 1%(t),a(t),w(t)
of;
() Oujlx(t),a(t),w(t)
of;
i(t) ow; Ix(t),a(t),w(t)

e this is an LDS with state d,, action §,, and disturbance Gd,,
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Time discretization



Time discretization

computers can simulate or optimize the evolution of LDS

this is easiest if we divide the time span into discrete chunks

: : e —
to t tk

e K is the number of time steps
k € {0,..., K} indexes time steps

often, we use a uniform time step At: t, = tg + kAt
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Reminder: Solving first-order linear vector ODE IVPs

the solution to the first-order linear vector ODE IVP

0

tinit — init
(i) = it

= Ax(t) + b(t)

with constant A € R™" is

t
(t)— (t—t"t)A |n|t+etA/ e_TAb(T)dT
tinit
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Time discretization in general

e consider the perfectly observed LDS

ﬂ%Q:Amdﬂ+B®MU+WW

e suppose A is piecewise constant:
te <t <t = A(t) = Altk)
e then

X(tea1) = el =tAG) (1)

7381
+enﬂﬂﬂﬁ/ " e AW (B(r)u(r) + w(r))dr

ty
e this is just the ODE IVP solution with fnit — ¢t = tx+1, and
b(t) = B(t)u(t) + w(t)
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Time discretization in general

A X(tl)
X(m)./\ x(t)
/.
} — >t
to t tk
U(tO):‘ u(t)
U(tl) /
: ce —_— ¢
to t tk
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Time discretization with piecewise constant inputs

e if A, B, u, and w are piecewise constant,

t <t < tpy1 = {A(t) = A(tk)a B(t) = B(tk)

then
X(tyy1) = e(tk+1—tk)A(tk)X(tk)

tet1
+enﬂmu{/ e A dr(B(te)u(ti) + w(tk))

tk

o if A(tx) is invertible, then

etkr1A(t) /tkH e At g — (e(fk+1—tk)A(fk) — I) Alt) ™

ty
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Time discretization with piecewise constant inputs

ID—Q
U(to) : -5
| u(tk-1)
| u(ty)
t
: e _
to t tk



Summary: Discretizing LDS

e consider the continuous-time LDS

dx(t) 5 -
P _ Aepete) + Bloyu(e) + i)

with piecewise constant /Z\ B, u, w

e the equivalent discrete-time LDS is
x(k +1) = A(k)x(k) + B(k)u(k) + w(k)

where -(k) denotes -(tx), A(k) = etk =t)A(L)  and
~ 1 o .
B(k) = etk+lA(tk)/ e_TA(tk)dTB(tk)

- 7551 -
w(k) = eriA) / e AW dr (1)
t
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Summary: Discretizing LDS (continued)

e sample Matlab discretization code:

csys ss(Atk,Btk,Ctk,Dtk); % continuous-time system
dsys = c2d(csys,t(k+1)-t(k)); % discrete-time system
Ak = dsys.A; Y, discrete-time dynamics matrix

e if the dynamics matrix A(ty) is invertible, then

B(k) = (A(k) — 1) A(te) " B(t)
— 1) A(ti) (k)
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Discretizing nonlinear dynamical systems

there is no general analytical formula for discretizing

dx(t)
— = Fx(0), u(t), w(2))

with an arbitrary nonlinear dynamics function f

but numerical ODE solvers can do the trick

Runge-Kutta 4th order method works well for most problems
e Matlab example with f(x(t), u(t), w(t)) = x(t)u(t)"®) € R:
fk = @(tk,xk) xk*u(k) w(k); % dynamics function

[*,soln] = oded4b(fk, [t(k),t(k+1)],x(k)); % solver call
x(k+1) = soln(end); % solution
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Example: A simple climate model



A simple model of earth's temperature dynamics

4rR%c0 T 47R%(1 —e)oT*

Atmosphere, T,

47TR2€0'T34 ArR25 T4

Earth's surface, T

orange is shortwave radiation (sunlight), red is longwave

e R =6.38 x 10° m is the earth’s radius

S = 1370 W/m? is the solar constant

e o= 0.3, £ =0.767 are the atmosphere’s albedo, emissivity

e 0 =567 x 1078 W/m2/K* is the Stefan-Boltzmann constant
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e “atmosphere” is very thin with negligible thermal capacitance
= its temperature responds instantly to changes in forcing
e ‘“earth’s surface” is 70 m of water covering 70% of surface

— its internal energy is U = CT with thermal capacitance

C = mc = pVc = pAlc =1.05 x 102 J/K

Earth's surface Ié =70 m

A =0.7(47R?)
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Steady-state power balance on atmosphere

WNV 4rR’co T2 47R*’(1 —¢)o T*

(1 - a)7R? 4rR?co T2 ArR%0 T

power in = power out
— 7R}(S+40T*) =7R?[aS+ (1 - a)S
+8s0 T, +4(1—¢€)oT?]
— Ti=T*)2
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Transient power balance on earth’s surface

(1 - a)rR? 4rR%eo T} 4rR%0 T

rate of change of energy = power in — power out

‘jj_‘; =7R?[(1 - @)S +40eT} — 40 TH)]
dT  7R? 4
E = T [(1 —a)5—4a(1 —6/2)7— ]
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Effect of greenhouse gases on surface temperatures

greenhouse gas emissions increase atmospheric emissivity €

e in steady state, global-average surface temperature is

(1-w)s

7= 40(1—¢/2)

o ife=0,then T =255 K=-18°C = —-0.4°F
e ife=1,then T =303.3 K=30.3°C=286.5°F

e 1880-1900 average: T = 286.7 K = 13.7 °C = 56.7 °F
(consistent with an atmospheric emissivity of ¢ = 0.748)

e in 2022, T was 287.8 K = 14.8 °C = 58.6 °F
(consistent with an atmospheric emissivity of ¢ = 0.767)

NOAA (2023), Climate Change: Global Temperature
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Nonlinear dynamical system

dynamics:
d7(t) nR? 4
= T (- a(0)S — 401~ (8)/2)T(1)"]
P _ 50— w(e)2x0)° + )
Fx(8),u(t),(2))
with

e state: x(t) = T(t)

e action: u(t) = £(t) (a stand-in for CO2 concentration)

e (continuous-time) disturbance: W(t) = TR?(1 — a(t))S/C
e parameter 3 = 4071R?/C
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Linearization

e given nominal &(t), w(t), compute nominal X(t) with ODE45

e the partial derivatives

of
I = 40— u(0)/2x()°
of of

() Bx(t)*/2, )
give linearized continuous-time dynamics

0x(t) = 3(£)3x(t) + b()du(t) + ba(t)
with 4.(t) = -(t) —*(t) and

3(t) = —4B(1 — a(t)/2)x(t)*, b(t) = BR(t)*/2
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Time discretization

e use uniform time step At
e assume 3(t), b(t), 8,(t), d(t) are piecewise constant

e then the discrete-time linearized system is
Sx(k + 1) = a(k)dx(k) + b(k)Su(k) + duw (k)
with
a(k) = et (k) = (a(k) — 1) b(tx)/3(t)
dw(k) = (a(k) — 1) 65 (ti)/a(tx)
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