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Notation and math reminders



Scalars

e a scalar is a number

e R is the set of real scalars
(as opposed to integer, rational, imaginary, complex, ...)

e the notation @ € R means « is a real scalar
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e a vector is an ordered list of numbers

e the dimension of a vector is the length of the list

e column vectors are vertical lists; row vectors are horizontal
e R" is the set of real n-dimensional column vectors

e we write the column vector a € R" as

ai
or (a1,...,an)

dan

e a3, ¢ Riselement / of a € R”
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e a matrix is a rectangular array of numbers

the size of a matrix is (# of rows) x (# of columns)
R™*" is the set of real m x n matrices
e we write A € R™*" 35

Al ... A
A= 5
Ami .. Amn

Ajj € Ris element /,j of A

e the transpose of A € R™*" is
A11 Ce Aml
AT — : : c Rn><m
Ain oo Amn
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Matrices generalize vectors generalize scalars

e a matrix A € R™1 with 1 column is a column vector
(and a matrix A € R1X" with 1 row is a row vector)

e a 1-dimensional vector a € R is a scalar

e for these reasons, we write R"*! as R” and R! as R
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Scalar multiplication

fora € R, a€ R", and A € R™*"

Qal
aa = aq =
Qan
and
OéAll e aAl,,
oA = Aa = : :
aAm ... Amn
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Inner product

e for ac R" and b € R",

by
aTb:[al a,,] S| =a1b1 4+ -+ apby
bn

e also called dot product, sometimes denoted a - b or (a|b)
1

o example: 1"a=a; + - +a, wherel= [:| €R"
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Matrix-vector multiplication

e for Ac R™*" and b € R”,

[ A11by + -+ Arnbn,
Ab = :
_Amlbl + -+ Amnbn
[ [Aun ... Aulb
[Aml . Amn] b
A1 Aln
— bl +---+ bn
Aml Amn
1
e example: Ib = b, where | = € R™n
1
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Matrix-matrix multiplication

e for A€ R™ "™ and B € R"*P, the i, j element of AB € R™*P is
B;
(AB)U = [A,'l . A,',,]
B;

syntax AB only parses if (# columns of A) = (# rows of B)
caution! AB # BA in general

¢ syntax AB = BA only parses if A and B are both n x n

< even if A and B are both n x n, AB = BA only in special cases

if A€ R™" is invertible, then A=A = AA"1 =/
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Matrix-valued functions of scalars

o A:R — R™" means A is a function that

o takes scalars as inputs
© gives m X n matrices as outputs

o for A: R — R™" and t € R, we write

All(t) - Aln(t)
At) = : :
Ami(t) ... Amn(t)

e A(t) € R™*" (an m X n matrix) is the value of A at t

e Aj:R— Riselement /,jof A
(Ajj is a scalar-valued function of scalars)
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Differentiating matrix-valued functions of scalars

e the derivative of A: R — R™*" is

dAll(t) o dA]_n(t)
dA(t) B d.t d.t
dt dA,,;l(t) dA,,;n(t)
dt te dt

e product rule: for A:R— R™ " and b: R — R",

d B db(t) dA(t)
E(A(f)b(f)) = A(t)? + ?b(f)
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Integrating matrix-valued functions of scalars

e the integral of A: R — R™*" js

/ttz A(t)dt =

e fundamental theorem of calculus: for A: R — R™*",

/: %Sf)dt — Alty) — A(tr)

2 Aun(t)de . [2 Aua(t)dt

2 Am(t)dt . [2 Apa(t)dt
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Block matrices

e the elements of a block matrix are matrices, e.g.

-[5

e submatrices B, C, D, and E must have consistent dimensions
B and C must have the same # of rows

D and E must have the same # of rows

B and D must have the same # of columns

C and E must have the same # of columns

<

o 00
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First-order linear scalar ODEs



Scalar ordinary differential equations (ODEs)

e a scalar ODE
¢ has a scalar-valued function of scalars as the variable
o relates that function to its (ordinary) derivative(s)

e examples:
dx(t)
dt
d?x(t
-jﬁglzzgmxa»
d3x(t) dx(t)
T T
e solving these ODEs means finding the function x : R =+ R

=e 'x(t) -3
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Categorizing ODEs

e the order of an ODE is the highest derivative it contains

e an nth-order ODE is linear if it can be written as

d"x(t) d"1x(t) dx(t)
P a"_l(t)dt"——l + -4 a(t) T ag(t)x(t) + b(t)
for some functions ag, ..., an—1, b: R—R
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ODE categorization examples

d);—(tt) =e 'x(t) -3 first-order, linear
2
dd);(zt) = sin(x(t)) second-order, nonlinear
d3x(t) dx(t) : :
— ¢ — x(t third-order, linear
de3 dt x(t)
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Solving first-order linear ODE initial value problems (IVPs)

e a general first-order linear scalar ODE IVP has the form

Awn:xM,%§2=4n4n+Mﬂ

e multiplying the ODE by any positive g : R — R gives

2 i (0)a(0e(e) = ()50

e recall the product rule,

9 xos() = 2

e so if dg(t) = —a(t)g(t), then
< (x()8(1) = s(1)b(1)
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What positive g : R — R satisfies

e let [a(t)dt (itself a function of t) denote any antiderivative of a
o for example, if a(t) = cos(t), we can use [ a(t)dt = sin(t)
o guess: g(t) = e Ja(t)dt
o this g is positive since e > 0 for any number z € R
e check:
dg(t) _ ie—fa(t)dt

dt dt

o J alt)dt d <_/a(t)dt)

dat
= e [A0%(=a())
~a(t)g(1)
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Solving first-order linear ODEs (continued)

o with g(t) = e~/ 209t we have

2 (x(1)a(t)) = s(1)p(2)

e = [ grptryer

fr— _—
tinit dT

t

— x()g(t) - x(")g(e"™) = [ g(r)pir)er

ti

::>XU)::E%5[gUMUxm“+¥A;g(ﬂb@ﬁd{

e this is the solution x to our first-order linear ODE IVP
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Summary: Solving first-order linear ODE IVPs

the solution to the first-order linear ODE IVP

AWB:XM,#glzdﬂAO+MU

X(t) g(lt) [g(tinit)xinit + /t;:ac g(T)b(T)dT:|

where
g(t) _ effa(t)dt
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Homework: A concrete example

consider the IVP

1 dx(t) 2x(t) 1
1) = - = — -1 _
x(1) 27 dt t Tt + t

write down a(t) and b(t)
find g(t)

find ftt;nit g(7)b(7)dr

write down the solution x(t)
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Special cases with constant coefficients

e if a is constant, then g(t) = e * and
init ini t
X(t) _ e(tft )axlmt_l_eta/ eiTab(T)dT
tinit

e if b is also constant and a # 0, then

inity,  in (t=t")a _ 1
X(t) _ e(t—t )axlnlt + € - b

e if a=0 and b is constant, then
X(t) — Xinit + (t . tinit)b,

inity — yinit  dx(t) _
as expected from the IVP x(t"™*) = x'"t, );_t =
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Battery example



A simple battery model

e a simple model of a battery is

d);(tt) — _@ + pchem(t)

e x(t) € R (kWh) is the stored chemical potential energy
e 7 >0 (h) is the self-dissipation time constant

e p"eM(t) (kW) is the chemical charging power
(or discharging if p<"*™(t) < 0)
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Solving a battery IVP with constant power

e the battery model is a first-order linear ODE with

© a= —1/7 (constant)
o b(f) — pchem(t)

e so if p'*™M(t) is constant and x(t") = x™t, then
X(t) _ e—(t—ti"it)/TXinit + 11— e—(t—ti"it)/r] Tpchem

e ast — 00, x(t) approaches a steady state xfi" = 7pchem:

. dx(t chem
x(t) = X" = Zi):—Tp +pem =0
T
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The solution is a mixture of the initial and final states

e any mixture of quantities z; and z can be written as
Az1+ (1= Nz

for some weight \ € [0, 1]
e since T is positive, e ((=t")/7 € [0, 1] for all ¢ > ¢init

e so (with constant p"*™) the battery IVP solution

x(t) = e—(t—tinit)/TXinit + 01— e_(t_tinit)/T o fin

is a mixture of x™* and xfi", weighted by A\(t) = e—(t—t"")/7
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Convergence rate in terms of the time constant 7

e define the normalized gap between x(t) and xfi",

fin
X" — x(t)
y(t) = it

normalized by the initial gap xfi" — xinit
e a little algebra shows that y(t) = e~ (t=t")/
e so after n time constants, 100e™"% of the initial gap remains
y(t) [ 100% | 37% | 14% | 5% 2%
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nergy evolution with con

zhn

0.2xinit+ 0.8$ﬂn L |

0.4z 4 0.6z | 1

0.6z™ 4 0.4z | 1

0.8zt 4 0.2z | 1

init

tinit tinit‘+ T tinit#» 27 tinit<;> 3T tinit# At tinit+ 51
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Linear vector ODEs



First-order linear vector ODEs

e a first-order linear scalar ODE has the form
dx(t)
dt
where a(t) € R, b(t) € R, and the variable is x : R — R
e a first-order linear vector ODE has the form
dx(t)
dt
where A(t) € R™", b(t) € R”, and the variable is x : R = R”
e in terms of the matrix and vector elements,
dxi(t)/dt Au(t) ... Aw(t)| | x(t) bi(t)
: : : : + :
dx,(t)/dt Ani(t) ... Am(t)] [xa(2) bn(t)

= a(t)x(t) + b(t)

= A(t)x(t) + b(t)
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Writing nth-order scalar ODEs as first-order vector ODEs

e consider the nth-order linear scalar ODE
X(n) — an_]_X(n_l) _I_ - + alx(l) _I_ aOX _|_ b

(with time arguments suppressed and notation x() = d'x/dt)

e define a new variable z: R - R" by z = (X, . ,x(”_l))
e then the first derivative of z is
x(1) 1 X
X(n.—l) - 1 X(n.—2) +
x(m) a ... ap—2 an—1 x(n=1) b

e this is a first-order linear vector ODE of the form

dz(t)
dt

= A(t)z(t) + c(t)
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Solving first-order linear vector ODE IVPs

e the first-order linear vector ODE IVP

dx(t)

tinit _ init R"
x(t"™) = x""t € R", dat

= A(t)x(t) + b(t)

has no analytical solution for general time-varying A(t)
e but for constant A, the IVP has solution
init H ¢
X(t) _ e(t—t )AX|n|t_|_etA/ e_TAb(T)dT

tinit

where e” € R"™" is the matrix exponential of M € R"*"
e in Matlab, eM = expm (M)
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The matrix exponential of any M € R"™"

e notation: M2 = MM, M3 = MMM, and so on
e definition:

1 1
M_14+m M? M3 +
+M+ M

e why define the matrix exponential? because for any t € R,

d tM __ d 2 343
e dt</+tM+ ~t2M 3!tM +..

:I\/I+tM2+2—t2I\/I3—|—
:M<I+tM+ —t*M? + )

= MetM
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Properties of the matrix exponential of any M € R"*”"

. %e”\/’ = MetM = etMM for any t € R
e €0 =/ (where 0 and / are n x n)

o e(it)M — otiMoteM for apy 1 t, € R

e eM is always invertible and (etM)~! = e=tM:

etl\/le—tM _ e(1:—15)M _ eOM _ eo —
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Properties of the matrix exponential (continued)

if M is invertible, then

to
/ etMyt — p-1 (et2M _ et1M> _ (etzl\/l _ et1M> V-1
t

1

since

d MetM
— / etMdt = I\/I/ etMdt
— e?M — M/ e™dt

t
e (eth - eth) :/ otMyt
t

1
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Homework: Prove the linear vector ODE IVP solution

XQWU::XWtER”,dzg)::Ax@)+bU)

. X(t) _ e(t_tinit)AXinit + etA/ e_TAb(T)dT

tinit

e follow the steps from the scalar ODE IVP proof
e use properties of the matrix exponential
e use the product rule: for G : R — R"™" and x: R — R",

d dx(t) dG(t)
d

E(G(t)x(t)) = G(t)—t + Tx(t)

33/36



Special case of invertible A, constant b

if Ais invertible and b is constant, then
x(t) = e(t—t")A init | [e(t—t‘”it)A N /} A-1p

since

t t
etA/_ e Abdr = etA/ e "Adrb
tmit tinit
— oA [_ (e—tA _ eti"itA> A‘l} b
_ etA(efti"itA _ eftA)Aflb

= | [ A
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Special case of noninvertible A, constant b

if A and b are constant, then

o t
X(t) _ e(t—t'"'t)AXmlt + etA/ e TAdrb

tinit

how to compute e*? ftfnit e~ ™Ad7h when A is noninvertible?

compute e(t=t"™)A \where A = [A b} e RrH1xn+l

the upper right n x 1 block of e(t=t")A js tA ftfnit e~ ™Adrb
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Special case of noninvertible A, constant b (proof)

e define the constant dummy variable y(t) = 1 and

z(t) = {;Eg] _ [e(t—tinit)A e [, le—TAdTb] {xi;it]

e then

. «it] dz(t dx(t)
(i) = 7] = [d;@)
dt

[ -

= [ydnit
e this linear ODE IVP has solution z(t) = e(t=t"")A [Xl ]

e it follows that

[e(t_tinit)A eth fttinit e_TAdTb] _ o(t—t™)A
1
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