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Heating with electricity



Electric resistance heating
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Np (rate e dirt-cheap to install, lasts ~forever
of work) e but inefficient/expensive to run
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Heat pump thermodynamic cycles

e 1st law: gin + P = Qout
e heating capacity: qout

hotter
region, Tp

e coefficient of performance:

heat transfer output
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with T, Tp in Kelvin
2/29



Carnot performance limit
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How to pump heat
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Nicole Kelner

NICOLL KELNER
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https://nicolekelner.darkroom.com

How to pump heat

MANUAL HEAT PUMPS ARE SUCH A PAIN.

xked: Heat Pump
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https://xkcd.com/2790/

How to pump heat (vapor compression cycle)
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Moran (2018): Fundamentals of Engineering Thermodynamics
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Fitting real heat pump COPs to manufacturer data

e real heat pumps COPs don’'t come close to Carnot limit
e NEEP collects manufacturer-reported steady-state COP data

y = 0.0449z + 2.57
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central ducted units from 3 manufacturers, 21 °C indoor air

Northeast Energy Efficiency Partnerships: Cold-climate air-source heat pumps
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https://ashp.neep.org/#!/product_list/
https://ashp.neep.org/#!/product_list/

Simple heat pump simulation

e assume ~constant indoor temperature
e model COP as a function ~only of outdoor temperature 6

e fit COP curve n: R — R to manufacturer data, such as
n(0) = max {1,0.04490 + 2.57}

(most heat pumps switch to resistance [COP 1] at low 6)
e read off cold-weather compressor power limit p from data
e simulate building with constraint g(t) € [0,7(0(t))p]
e set input electric power to p(t) = q(t)/n(0(t))
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Heat pumps with resistance backup

e heat pumps are expensive to install but cheap to run

e resistance is cheap to install but expensive to run

e hybrid systems pair heat pumps with resistance backup
p

p=max{q/n,q+ (1 —n)p}
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Air conditioning



Air conditioners are just one-way heat pumps

e most heat pumps can run in reverse to cool and dehumidify

= lower up-front cost than heater + (one-way) air conditioner

11/29



Heat pump vocabulary

heat source heat sink device name

refrigerator air | kitchen air refrigerator

freezer air kitchen air freezer

outdoor air indoor air air-source heat pump (ASHP)
(or air-to-air heat pump)

indoor air outdoor air | air conditioner or ASHP

outdoor ground | indoor air ground-source heat pump
(or geothermal heat pump)

outdoor air indoor water | heat-pump water heater

indoor air indoor water | heat-pump water heater

indoor water outdoor air | chiller

outdoor water indoor air water-source heat pump
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Refrigeration thermodynamic cycles

o 1st law: Gin + P = Qout

hotter e coefficient of performance:
region, Tp

heat transfer input

net work input
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with T, Tp in Kelvin
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Carnot performance limit
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Real air conditioner COPs

NEEP database also has cooling COP data

y = —0.197z + 10.3

Coefficient of performance
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central ducted units from 3 manufacturers, 21 °C indoor air

Northeast Energy Efficiency Partnerships: Cold-climate air-source heat pumps
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https://ashp.neep.org/#!/product_list/
https://ashp.neep.org/#!/product_list/

Dehumidification

e air conditioners

o reduce indoor air temperature (sensible load)
© condense water out of indoor air (latent load)

e total load = sensible load + latent load
e sensible heat ratio s is ratio of sensible load to total load
e building simulations often produce sensible load g(t) only

e to account for dehumidification, estimate s and set

gl a(t)
P = 6(0) ~ sn(0(D)

e in reality, s depends on weather, building, occupant behavior
e first cut: set s &~ 70 to 95% for humid to dry climates
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Sizing heating and cooling equipment



Sizing for heating

e estimate overall indoor-outdoor thermal resistance R
e get design outdoor temperature 69

e set design indoor temperature 79 to occupant preference
e pick plausible gd¢s for ~4 AM

e size to steady-state heat load in design conditions:

_ r Tdes _ edes des
Ph = (6% R e

e oversize ratio r ~ 1.2 to 1.5, typically
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Sizing for cooling

e like heating, but

_ r edes _ Tdes des
Pe = sn(0%=) ( R )
des

e ¢c® should be plausible for sunny afternoon
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Sizing two-way heat pumps

calculate pj, and p. for heating and cooling design conditions

if P, < P, set p = p. (size for cooling)
if p, > p., options:
1. set p = Py, (size for heating)
2. set p = p. and add backup > 7(0%*)(p, — p)
3. get biggest available unit and add backup > 7(69*)(p, — p)

backup heat could be

¢ another heat pump
resistance

heat storage

wood

propane

heating oil

natural gas

L R IR VIR VI o
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Sizing example for a house in Lafayette

‘ Qdes (oc) ‘ Tdes (oc) ‘ qges (kW) ‘ n(edes)
heating —16 21 1 1.8
cooling 32 24 4 4

e input parameters: R =3 °C/kW, r =1.3, s =0.8
e sizing results: p, = 8.2 kW, p. = 2.7 kW
e biggest available residential heat pumps have p ~ 7.5 kW

= need some form of backup heat

ASHRAE: Design conditions for Lafayette, IN, USA
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http://cms.ashrae.biz/weatherdata/STATIONS/724386_p.pdf

Common HVAC system configurations



Central ducted residential systems

return —
ducts supply
\ ducts

N

air handler

This Old House: Central air conditioning
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https://www.thisoldhouse.com/heating-cooling/21018992/read-this-before-you-install-central-air-conditioning

Ductless mini-split residential systems

indoor unit

refrigerant lines

=

New Hampshire Electric Co-Op: Ductless mini-split heat pumps
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https://www.nhec.com/ductless-mini-split-heat-pump-faq/

Hydronic residential systems

low temparatures to
maimise efficioncy

Radiators

1 Radiators can be used
i but must be sized for
L]

1IN Heating Circuit

Air Source
Heat Pump

Hot Water Cylinder

Heated Water

Energy.nl: Heat pump — Air to water
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https://energy.nl/data/heat-pump-air-to-water/

Variable air volume commercial systems

Air Handling Unit (AHU)
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Pacific Northwest National Laboratory: Variable air volume systems
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https://www.pnnl.gov/projects/om-best-practices/variable-air-volume-systems

Variable air volume boxes

Hot water
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Pacific Northwest National Laboratory: Variable air volume systems
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https://www.pnnl.gov/projects/om-best-practices/variable-air-volume-systems

Thermal distribution models



Forced-air heat transfer
B

building or
zone, T

l(T—m/R

m, 7-sup — ——m, Tree = T

e m(t) (kg/s) is mass flow rate of supply air

e power balance:

Cdzy):0@);Tu)+ﬁmn%(nw@y_T@»+q4ﬂ

~~

qc(t)

e ¢, =1 kJ/(kg°C) is specific heat of air at constant pressure
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Hydronic heat transfer
P

building or
zone, T

l(T—H)/R

rhy Tret

o m(t) (kg/s) is mass flow rate of supply water

e power balance:

CdT(t) 0(t) — T(t) N

dt R m(t)C(TSUP(t) - Tret(t)Z"i‘qe(t)

-~

qe(t)

o ¢ =4.2kJ/(kg°C) is specific heat of water
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Fans and pumps
|»

. fan or )
m, Tin —» — m, Tout

pump

(rough) fan power balance:
p(t) = m(t)cp(Tour(t) — Tin(t))

e pump:

p(t) = m(t) | c(Tour(t) — Tin(t)) +

Pin(t), Pout(t) (kPa) are inlet, outlet pressures
p = 1000 kg/m?3 is density of water
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Pump and fan affinity laws

e in theory, pumps and fans follow the affinity law

3

where o = prated/mrated

e in practice, usually fit a model to (m, p) data, such as

p(t) = Bo + Bim(t) + Bari(t)? + Bari(t)?
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