Heating, ventilation, and air conditioning

Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

Outline

Heating with electricity

Air conditioning

Sizing heating and cooling equipment

Common HVAC system configurations

Thermal distribution models

Electric resistance heating

- (steady-state) 1st law: p = q
- coefficient of performance:

$$\eta = \frac{\text{heat transfer output}}{\text{net work input}} = \frac{q}{p} = 1$$

- Joule heating: $p = I^2 R$
- $\bullet\,$ dirt-cheap to install, lasts $\sim\!$ forever
- but inefficient/expensive to run

Heat pump thermodynamic cycles

- 1st law: $q_{in} + p = q_{out}$
- heating capacity: q_{out}
- coefficient of performance:

$$\eta = \frac{\text{heat transfer output}}{\text{net work input}}$$
$$= \frac{q_{\text{out}}}{p} = \frac{q_{\text{out}}}{q_{\text{out}} - q_{\text{in}}}$$
$$= \frac{1}{1 - q_{\text{in}}/q_{\text{out}}}$$

• Carnot performance limit:

$$\eta \leq \frac{1}{1 - T_c/T_h}$$

with T_c , T_h in Kelvin

2 / 29

3/29

How to pump heat

Nicole Kelner

How to pump heat

MANUAL HEAT PUMPS ARE SUCH A PAIN.

How to pump heat (vapor compression cycle)

Moran (2018): Fundamentals of Engineering Thermodynamics

Fitting real heat pump COPs to manufacturer data

- real heat pumps COPs don't come close to Carnot limit
- NEEP collects manufacturer-reported steady-state COP data

Northeast Energy Efficiency Partnerships: Cold-climate air-source heat pumps

- assume ~constant indoor temperature
- model COP as a function $\sim\!\!{\rm only}$ of outdoor temperature θ
- fit COP curve $\eta: \mathbf{R} \rightarrow \mathbf{R}$ to manufacturer data, such as

 $\eta(\theta) = \max\{1, 0.0449\theta + 2.57\}$

(most heat pumps switch to resistance [COP 1] at low θ)

- read off cold-weather compressor power limit \overline{p} from data
- simulate building with constraint $q(t) \in [0, \eta(\theta(t))\overline{p}]$
- set input electric power to $p(t) = q(t)/\eta(\theta(t))$

Heat pumps with resistance backup

- heat pumps are expensive to install but cheap to run
- resistance is cheap to install but expensive to run
- hybrid systems pair heat pumps with resistance backup

Outline

Heating with electricity

Air conditioning

Sizing heating and cooling equipment

Common HVAC system configurations

Thermal distribution models

Air conditioners are just one-way heat pumps

most heat pumps can run in reverse to cool and dehumidify
 lower up-front cost than heater + (one-way) air conditioner

Heat pump vocabulary

heat source	heat sink	device name		
refrigerator air	kitchen air	refrigerator		
freezer air	kitchen air	freezer		
outdoor air	indoor air	air-source heat pump (ASHP)		
		(or air-to-air heat pump)		
indoor air	outdoor air	air conditioner or ASHP		
outdoor ground	indoor air	ground-source heat pump		
		(or geothermal heat pump)		
outdoor air	indoor water	heat-pump water heater		
indoor air	indoor water	heat-pump water heater		
indoor water	outdoor air	chiller		
outdoor water	indoor air	water-source heat pump		

Refrigeration thermodynamic cycles

- 1st law: $q_{in} + p = q_{out}$
- coefficient of performance:

$$\eta = \frac{\text{heat transfer input}}{\text{net work input}}$$
$$= \frac{q_{\text{in}}}{p} = \frac{q_{\text{in}}}{q_{\text{out}} - q_{\text{in}}}$$
$$= \frac{q_{\text{in}}/q_{\text{out}}}{1 - q_{\text{in}}/q_{\text{out}}}$$

• Carnot performance limit:

$$\eta \leq \frac{T_c/T_h}{1 - T_c/T_h}$$

with T_c , T_h in Kelvin

13/29

14 / 29

Real air conditioner COPs

NEEP database also has cooling COP data

Northeast Energy Efficiency Partnerships: Cold-climate air-source heat pumps

Dehumidification

- air conditioners
 - ◊ reduce indoor air temperature (sensible load)
 - condense water out of indoor air (latent load)
- total load = sensible load + latent load
- sensible heat ratio s is ratio of sensible load to total load
- building simulations often produce sensible load q(t) only
- to account for dehumidification, estimate s and set

$$p(t) = rac{q_{ ext{tot}}(t)}{\eta(heta(t))} = rac{q(t)}{s\eta(heta(t))}$$

- in reality, s depends on weather, building, occupant behavior
- first cut: set $s \approx 70$ to 95% for humid to dry climates

Outline

Heating with electricity

Air conditioning

Sizing heating and cooling equipment

Common HVAC system configurations

Thermal distribution models

Sizing for heating

- estimate overall indoor-outdoor thermal resistance R
- get design outdoor temperature θ^{des}
- set design indoor temperature T^{des} to occupant preference
- pick plausible q_e^{des} for ~4 AM
- size to steady-state heat load in design conditions:

$$\overline{p}_{h} = \frac{r}{\eta(\theta^{\mathsf{des}})} \left(\frac{T^{\mathsf{des}} - \theta^{\mathsf{des}}}{R} - q_{e}^{\mathsf{des}} \right)$$

• oversize ratio $r \approx 1.2$ to 1.5, typically

Sizing for cooling

• like heating, but

$$\overline{p}_{c} = \frac{r}{s\eta(\theta^{\mathsf{des}})} \left(\frac{\theta^{\mathsf{des}} - T^{\mathsf{des}}}{R} + q_{e}^{\mathsf{des}}\right)$$

• q_e^{des} should be plausible for sunny afternoon

Sizing two-way heat pumps

- calculate \overline{p}_h and \overline{p}_c for heating and cooling design conditions
- if $\overline{p}_h \leq \overline{p}_c$, set $\overline{p} = \overline{p}_c$ (size for cooling)
- if $\overline{p}_h > \overline{p}_c$, options:
 - 1. set $\overline{p} = \overline{p}_h$ (size for heating)
 - 2. set $\overline{p} = \overline{p}_c$ and add backup $\geq \eta(\theta^{des})(\overline{p}_h \overline{p})$
 - 3. get biggest available unit and add backup $\geq \eta(\theta^{des})(\overline{p}_h \overline{p})$
- backup heat could be
 - $\diamond\,$ another heat pump
 - ◊ resistance
 - ♦ heat storage
 - $\diamond \ wood$
 - ◊ propane
 - ◊ heating oil
 - \diamond natural gas

Sizing example for a house in Lafayette

	θ^{des} (°C)	T ^{des} (°C)	$q_e^{ m des}$ (kW)	$\eta(heta^{des})$
heating	-16	21	1	1.8
cooling	32	24	4	4

- input parameters: $R = 3 \ ^{\circ}\text{C}/\text{kW}$, r = 1.3, s = 0.8
- sizing results: $\overline{p}_h = 8.2$ kW, $\overline{p}_c = 2.7$ kW
- biggest available residential heat pumps have $\overline{p} \approx 7.5 \text{ kW}$
- \implies need some form of backup heat

Outline

Heating with electricity

Air conditioning

Sizing heating and cooling equipment

Common HVAC system configurations

Thermal distribution models

Central ducted residential systems

This Old House: Central air conditioning

Ductless mini-split residential systems

New Hampshire Electric Co-Op: Ductless mini-split heat pumps

Hydronic residential systems

Energy.nl: Heat pump - Air to water

Variable air volume commercial systems

Pacific Northwest National Laboratory: Variable air volume systems

Variable air volume boxes

Pacific Northwest National Laboratory: Variable air volume systems

Outline

Heating with electricity

Air conditioning

Sizing heating and cooling equipment

Common HVAC system configurations

Thermal distribution models

Forced-air heat transfer

- $\dot{m}(t)$ (kg/s) is mass flow rate of supply air
- power balance:

$$C\frac{\mathrm{d}T(t)}{\mathrm{d}t} = \frac{\theta(t) - T(t)}{R} + \underbrace{\dot{m}(t)c_{p}(T_{\mathrm{sup}}(t) - T(t))}_{q_{c}(t)} + q_{e}(t)$$

• $c_{
m p} = 1 \ {\rm kJ/(kg^{\circ}C)}$ is specific heat of air at constant pressure

26 / 29

Hydronic heat transfer

- $\dot{m}(t)$ (kg/s) is mass flow rate of supply water
- power balance:

$$C\frac{\mathrm{d}T(t)}{\mathrm{d}t} = \frac{\theta(t) - T(t)}{R} + \underbrace{\dot{m}(t)c(T_{\mathrm{sup}}(t) - T_{\mathrm{ret}}(t))}_{q_c(t)} + q_e(t)$$

• $c = 4.2 \text{ kJ/(kg^{\circ}C)}$ is specific heat of water

Fans and pumps

• (rough) fan power balance:

$$p(t) pprox \dot{m}(t) c_{p}(T_{\text{out}}(t) - T_{\text{in}}(t))$$

• pump:

$$p(t) pprox \dot{m}(t) \left[c(T_{
m out}(t) - T_{
m in}(t)) + rac{P_{
m out}(t) - P_{
m in}(t)}{
ho}
ight]$$

- $P_{in}(t)$, $P_{out}(t)$ (kPa) are inlet, outlet pressures
- $ho = 1000 \ {\rm kg/m^3}$ is density of water

• in theory, pumps and fans follow the affinity law

$$p(t) = \alpha \dot{m}(t)^3$$

where
$$lpha={\it p}_{\sf rated}/{\dot m}_{\sf rated}^3$$

• in practice, usually fit a model to (\dot{m}, p) data, such as

$$p(t) = \beta_0 + \beta_1 \dot{m}(t) + \beta_2 \dot{m}(t)^2 + \beta_3 \dot{m}(t)^3$$