Convex sets and functions

Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

these slides draw on materials by Stephen Boyd at Stanford

Convex sets

Convex functions

Composition rules

Example functions

Line segments in \mathbf{R}^n

for $x, y \in \mathbf{R}^n$,

 $\{\theta x + (1-\theta)y \mid \theta \in [0,1]\}$

is the line segment connecting x and y

Line segments in \mathbf{R}^n (continued)

$\theta x + (1 - \theta)y$ with $\theta = 0$

0x + (1-0)y = y

$\theta x + (1 - \theta)y$ with $\theta = 0.1$

0.1x + (1 - 0.1)y = y + 0.1(x - y)

$\theta x + (1 - \theta)y$ with $\theta = 0.5$

$$0.5x + (1 - 0.5)y = y + 0.5(x - y)$$

$\theta x + (1 - \theta)y$ with $\theta = 0.9$

$$0.9x + (1 - 0.9)y = y + 0.9(x - y)$$

$\theta x + (1 - \theta)y$ with $\theta = 1$

1x + (1-1)y = x

Convex sets

• a set $C \subseteq \mathbf{R}^n$ is **convex** if for all $x, y \in C$ and $\theta \in [0, 1]$,

$$\theta x + (1 - \theta)y \in C$$

• C contains the line segment connecting any two points in C

Boyd and Vandenberghe (2004), Convex Optimization

Nonconvex subsets of ${\bf R}$

Hyperplanes

• any $b \in \mathbf{R}$ and nonzero $a \in \mathbf{R}^n$ define a hyperplane,

 $\left\{x \in \mathbf{R}^n \mid a^\top x = b\right\}$

• equivalent representation for any \tilde{x} satisfying $a^{\top}\tilde{x} = b$:

$$\left\{ x \in \mathbf{R}^n \mid a^\top (x - \tilde{x}) = 0 \right\}$$

Hyperplanes

• any $b \in \mathbf{R}$ and nonzero $a \in \mathbf{R}^n$ define a hyperplane,

 $\left\{ x \in \mathbf{R}^n \mid a^\top x = b \right\}$

• equivalent representation for any \tilde{x} satisfying $a^{\top}\tilde{x} = b$:

$$\left\{ x \in \mathbf{R}^n \mid a^\top (x - \tilde{x}) = 0 \right\}$$

Halfspaces

any $a \neq 0$ and b (or \tilde{x} with $a^{\top}\tilde{x} = b$) define a halfspace,

$$\left\{x \in \mathbf{R}^n \mid a^\top x \le b\right\} = \left\{x \in \mathbf{R}^n \mid a^\top (x - \tilde{x}) \le 0\right\}$$

if $a^{\top}x \leq b$ and $a^{\top}y \leq b$, then for any $\theta \in [0,1]$, $a^{\top}(\theta x + (1-\theta)y) = \theta a^{\top}x + (1-\theta)a^{\top}y$ $\leq \theta b + (1-\theta)b$ = b

Intersections of convex sets are convex

- suppose sets $C_i \subseteq \mathbf{R}^n$ are convex for i = 1, 2, ...
- take any x, y ∈ ∩_i C_i
 (this just means that for all i, both x and y are in C_i)
- each C_i is convex, so for any $\theta \in [0, 1]$,

$$\theta x + (1 - \theta)y \in C_i$$

• since $\theta x + (1 - \theta)y \in C_i$ for all $i, \theta x + (1 - \theta)y \in \bigcap_i C_i$

Polyhedra

• a polyhedron is a set

$$\left\{ x \in \mathbf{R}^n \; \middle| \; \begin{array}{l} \mathbf{a}_i^\top x \leq b_i \; \text{for} \; i = 1, \dots, m \\ \mathbf{c}_j^\top x = d_j \; \text{for} \; j = 1, \dots, p \end{array} \right\}$$

of solutions to finitely many linear inequalities and equations

• a polyhedron can be written as

$$\left(\bigcap_{i=1}^{m} \left\{ x \in \mathbf{R}^{n} \mid a_{i}^{\top} x \leq b_{i} \right\} \right) \bigcap \left(\bigcap_{j=1}^{p} \left\{ x \in \mathbf{R}^{n} \mid c_{j}^{\top} x = b_{j} \right\} \right),$$

the intersection of m halfspaces and p hyperplanes

 \implies polyhedra are convex

Polyhedra (continued)

Convex sets

Convex functions

Composition rules

Example functions

• the **domain** of $f : \mathbf{R}^n \to \mathbf{R}$ is

dom $f = \{x \in \mathbf{R}^n \mid f(x) \text{ is defined}\}$

• example: for log : $\mathbf{R} \to \mathbf{R}$, dom log = { $x \in \mathbf{R} \mid x > 0$ }

Epigraph

• the **epigraph** of $f : \mathbf{R}^n \to \mathbf{R}$ is

 $epi f = \{(x, y) \in \mathbf{R}^{n+1} \mid x \in \operatorname{dom} f, \ y \ge f(x)\}$

• example: $f(x) = x^2$, dom $f = \{x \in \mathbf{R} \mid |x| \ge 1\}$

Convex functions

- $f : \mathbf{R}^n \to \mathbf{R}$ is **convex** if **epi** f is convex
- equivalently,
 - \diamond **dom** *f* is convex
 - \diamond for all x, $y \in \mathbf{dom} f$ and $\theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

$\theta = 0.1$

$$\theta = 0.5$$

$$\theta = 0.9$$

Concave functions

 $f : \mathbf{R}^n \to \mathbf{R}$ is concave if -f is convex

- $f : \mathbf{R}^n \to \mathbf{R}$ is affine if $f(x) = a^{\top}x + b$ for some *a* and *b*
- if f is affine, then f is convex (and concave):

$$f(\theta x + (1 - \theta)y) = a^{\top}(\theta x + (1 - \theta)y) + b$$

= $\theta a^{\top}x + (1 - \theta)a^{\top}y + b$
= $\theta(a^{\top}x + b) + (1 - \theta)(a^{\top}y + b)$
= $\theta f(x) + (1 - \theta)f(y)$

• conversely, any function that's convex and concave is affine

Convex sets

Convex functions

Composition rules

Example functions

Monotonicity

• $f : \mathbf{R} \to \mathbf{R}$ is nondecreasing if

$$x \ge y \implies f(x) \ge f(y)$$

(and increasing if $x > y \implies f(x) > f(y)$)

• similarly, f is nonincreasing if

$$x \ge y \implies f(x) \le f(y)$$

(and decreasing if $x > y \implies f(x) < f(y)$)

f(x) convex nondec. $\iff f(-x)$ convex noninc.

The fundamental composition rule

- consider $h_1, \ldots, h_m : \mathbf{R}^n \to \mathbf{R}$ and convex $g : \mathbf{R}^m \to \mathbf{R}$
- define $f : \mathbf{R}^n \to \mathbf{R}$ by $f(x) = g(h_1(x), \dots, h_m(x))$
- f is convex if for each $i = 1, \ldots, m$,
 - \diamond h_i is affine, or
 - \diamond g is nondecreasing in argument i and h_i is convex, or
 - $\diamond g$ is nonincreasing in argument *i* and *h_i* is concave
- less precisely but perhaps more memorably,
 - $\diamond \ \mathsf{CVX}(\mathsf{AFF}) = \mathsf{CVX}$
 - $\diamond \ \mathsf{CVXND}(\mathsf{CVX}) = \mathsf{CVX}$
 - $\diamond \ \mathsf{CVXNI}(\mathsf{CCV}) = \mathsf{CVX}$

Composition rules for concave functions

- consider $h_1, \ldots, h_m : \mathbf{R}^n \to \mathbf{R}$ and concave $g : \mathbf{R}^m \to \mathbf{R}$
- define $f : \mathbf{R}^n \to \mathbf{R}$ by $f(x) = g(h_1(x), \dots, h_m(x))$
- f is concave if for each $i = 1, \ldots, m$,
 - \diamond h_i is affine, or
 - \diamond g is nondecreasing in argument i and h_i is concave, or
 - \diamond g is nonincreasing in argument i and h_i is convex

Useful special cases

- h_1 , h_2 convex $\implies h_1 + h_2$ convex
- h_1 convex, h_2 concave $\implies h_1 h_2$ convex
- *h* convex, scalar $\alpha \ge 0 \implies \alpha h$ convex
- *h* concave, scalar $\alpha \ge 0 \implies \alpha h$ concave
- h_i convex, scalars $\alpha_i \ge 0 \implies \alpha_1 h_1 + \cdots + \alpha_m h_m$ convex
- h_1, \ldots, h_m convex $\implies \max\{h_1, \ldots, h_m\}$ convex

Composition rules for monotonicity

- consider $g, h : \mathbf{R} \to \mathbf{R}$
- define $f : \mathbf{R} \to \mathbf{R}$ by f(x) = g(h(x))
- if g and h are nondecreasing, then f is nondecreasing:

$$x \leq y \implies h(x) \leq h(y) \implies g(h(x)) \leq g(h(y))$$

• if g and h are nonincreasing, then f is nondecreasing:

$$x \leq y \implies h(x) \geq h(y) \implies g(h(x)) \leq g(h(y))$$

• if g is nonincreasing and h is nondecreasing, then f is nonincreasing:

$$x \leq y \implies h(x) \leq h(y) \implies g(h(x)) \geq g(h(y))$$

• if g is nondecreasing and h is nonincreasing, then f is nonincreasing:

$$x \leq y \implies h(x) \geq h(y) \implies g(h(x)) \geq g(h(y))$$

Convex sets

Convex functions

Composition rules

Example functions

f(x) = |x| with $x \in \mathbf{R}$

$f(x) = \overline{\max{\{0, x\}} \text{ with } x \in \mathbf{R}}$

$f(x) = x^p$ with $x \in \mathbf{R}$ and even, positive p

$f(x) = x^p$ with $x \ge 0$ and p > 1

$f(x) = x^p$ with $x \ge 0$ and $p \in (0, 1)$

$f(x) = x^p$ with x > 0 and p < 0

$f(x) = e^{lpha x}$ with $x \in \mathbf{R}$, $lpha \ge 0$

$f(x) = e^{\alpha x}$ with $x \in \mathbf{R}$, $\alpha < 0$

$f(x) = \log(\alpha x)$ with x > 0, $\alpha > 0$

$f(x) = \max \{x_1, \dots, x_n\}$ with $x \in \mathbf{R}^n$

convex, (elementwise) nondecreasing

$f(x) = \min \{x_1, \dots, x_n\}$ with $x \in \mathbf{R}^n$

concave, (elementwise) nondecreasing

Norms

• $\| \| : \mathbf{R}^n \to \mathbf{R}$ is a **norm** if 1. $\|x\| \ge 0$ for all $x \in \mathbf{R}^n$ 2. $\|x\| = 0 \iff x = 0$ 3. $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in \mathbf{R}^n$, $\alpha \in \mathbf{R}$ 4. $\|x + y\| \le \|x\| + \|y\|$ for all $x, y \in \mathbf{R}^n$

- all norms ||x||
 - \diamond generalize the absolute value |x| of $x \in \mathbf{R}$
 - ◊ provide different measures of the length of x ∈ Rⁿ (or the distance ||x - y|| between x and y)
 - ◊ are convex

Norm examples

- taxicab or ℓ_1 norm: $||x||_1 = |x_1| + \dots + |x_n|$
- Euclidean or ℓ_2 norm: $||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$
- Chebyshev or ℓ_{∞} norm: $\left\|x\right\|_{\infty} = \max\left\{\left|x_{1}\right|, \ldots, \left|x_{n}\right|\right\}$

