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Batteries and electric vehicles



Stationary battery: Definitions

e state x(k) (kWh): stored chemical energy

e action u(k) (kW): chemical charging power

e output p(k) (kW): electrical charging power

e chemical energy capacities x, x (kWh)

e chemical power capacities u = —py/nd, U = Ncp. (kW)
e self-dissipation time constant 7 (h)

e dynamics parameters a = e 2t/ b= (1—a)r
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Stationary battery: Model

dynamics: x(k + 1) = ax(k) + bu(k)
state constraints: x < x(k) <X

action constraints: u < u(k) <u

e output equation: p(k) = max {1 u(k), u(k)/nc}
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Electric vehicle: Definitions

like stationary battery, but with

e chemical power capacities

(u(K), T(k)) = (=Pg/ndsnepe) if EV is plugged in at time k
-7 (0,0) otherwise

(py = 0 for EVs with one-way charging)

e disturbance w(k) = _%
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Electric vehicle: Model

like stationary battery, but with
e dynamics x(k + 1) = ax(k) + b(u(k) + w(k))

e time-varying action constraints:

u(k) < u(k) < (k)
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Passive thermal storage



Indoor air/shallow thermal mass: Definitions

e state x(k) = C(T (k) — T(k)): stored thermal energy

e action u(k) = qc(k) — Gc(k): thermal power perturbation

e output p(k) = ‘i]‘((:)): electrical charging power

e thermal energy capacities:

x(k) = C(T(k) = T(k)),
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e thermal power capacities:

u(k) = g (k) = Ge(k), u(k) = qc(k) — Ge(k)

C

e self-dissipation time constant 7 = RC

e dynamics parameters a = e 2t/7 b= (1—a)r
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Indoor air/shallow thermal mass: Model

e dynamics: x(k + 1) = ax(k) + bu(k)
e state constraints: x(k) < x(k) < x(k
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e action constraints: u(k) < u(k) <u

e output equation: p(k) = p(k) + u(k

power

time
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Deep thermal mass: Definitions

o state x(k) = Cp(Tm(k) — Tm(k)): stored thermal energy

e action u(k) = %ﬂj—(k): thermal power perturbation

e output p(k) = Cj;((:)): electrical charging power

e thermal energy capacities:

A

)_<(k) = Cm(Im(k) - -i-m(k))v Y(k) = Cm(Tm(k) - Tm(k))

e thermal power capacities:

e self-dissipation time constant 7 = R, C,,

e dynamics parameters a = e 2t/7 b= (1—a)r
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Deep thermal mass: Model

like indoor air, but with state-dependent output equation

p(k) = p(k) + ﬁ [(1 + %) u(k) — @]

8/29



Deep thermal mass output equation

e in an approximate 2R2C model with d T(t)/dt ~ 0,

qc(k) — T(k) ;me(k) + T(k) ;ozt-out(k) _ qe(k) (1)

e similarly, under baseline operation,

—i\_(k) — -i\_m(k) T(k) out( )
Rm * Rout B qe(k) (2)

CAIC(k) =

e subtracting (2) from (1) gives
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Active thermal storage



Lumped sensible thermal storage: Definitions

state x(k) = C(T (k) — Tps): stored thermal energy
action u(k) = qc(k): thermal charging power
output p(k): electrical charging power

thermal energy capacities:
x(k) = C(T(k) = Tis), x(k) = C(T (k) — Tis)

thermal power capacities:

self-dissipation time constant 7 = RC
dynamics parameters a = e 27 b= (1 — a)r
disturbance w(k) = (Ta(k) — Tis)/R — qq(k)
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Lumped sensible thermal storage: Model
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e output equation: p(k) = u(k)/n(k)
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Stratified sensible thermal storage: Definitions

state x(k) = C[y(k)(Th — T¢) + Tc — Tss]
action u(k) = qc(k): thermal charging power
output p(k): electrical charging power

thermal energy capacities:
x=C(Tc = Tss), x=C(Th— Tss)

thermal power capacities:

self-dissipation time constant 7 = RC
dynamics parameters a = e 27 b= (1 — a)r
disturbance w(k) = (Ta(k) — Tss)/R — qa(k)
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Stratified sensible thermal storage: Model

like lumped sensible, but with time-invariant state constraints:

x < x(k)<x
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Latent thermal storage: Definitions

state x(k) = C(Tm — To) + Lmy(k)
action u(k) = q.(k): thermal charging power
output p(k): electrical charging power

thermal energy capacities:
x=C(Tm—T.), x=C(Tp,— T.) + LM

thermal power capacities:

self-dissipation time constant 7 = oo
dynamics parameters a =1, b = At
disturbance w(k) = (Ta(k) — Tm)/R — q4(k)
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Latent thermal storage dynamics parameters

e for latent thermal storage, a=1 and b = At

e these are limits of a = e /7 and b = (1 — a)7 as T — oo

o e™BT 31 as T > 0
o letting @ = 1/7 and using L'Hopital’s rule,
1— e—aAt
lim (1 — e‘At/T> 7= lim
T—00 a—0 6]
) %(1 o e—aAt)
= lim ]
a—0 E(O‘)
= lim Ate At
a—0
= At
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Latent thermal storage: Model

like stratified sensible
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One model to rule them all



Unified model

e linear time-invariant dynamics:
x(k 4+ 1) = ax(k) + b(u(k) + w(k))

e linear time-varying state constraints:

u(k) < u(k) <a(k)
e nonlinear time-varying state-dependent output equation:

p(k) = g(k,x(k), u(k))
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Dynamics parameters

e for everything but latent thermal storage,
a=e A b=(1-a)r

e for latent thermal storage, a =1, b = At
(the limits of e 2t/7 and (1 — e 2/7)1 as T — c0)
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zero for
e stationary batteries
e indoor air/shallow thermal mass
e deep thermal mass

nonzero in general for
e electric vehicles
e lumped sensible thermal storage
e stratified sensible thermal storage

e latent thermal storage
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State constraints

time-invariant for
e stationary batteries
e electric vehicles
e stratified sensible thermal storage
e latent thermal storage
time-varying for
e indoor air/shallow thermal mass
e deep thermal mass

e lumped sensible thermal storage
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Action constraints

time-invariant for
e stationary batteries
time-varying for
e electric vehicles
e indoor air/shallow thermal mass
e deep thermal mass
e lumped sensible thermal storage

e stratified sensible thermal storage

latent thermal storage
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Output equation

nonlinear, time-invariant, state-independent for
e stationary batteries
e electric vehicles
linear, time-varying, state-independent for
e indoor air/shallow thermal mass
e |umped sensible thermal storage
e stratified sensible thermal storage
e latent thermal storage
linear, time-varying, state-dependent for

e deep thermal mass
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Other DERs



Refrigerators and freezers
- :

e there are ~200 million refrigerators and freezers in the US
e they all have some thermal mass and temperature flexibility

e at ~500 W each, that’s ~100 GW of flexible capacity
(for comparison, total US generation capacity is ~1.3 TW)

e can model them as thermal circuits, just like buildings

Whirlpool: Refrigerators
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https://www.whirlpool.com/kitchen/refrigeration.html

Deferrable loads

some appliances just need to run before a deadline

for example, a dishwasher might
¢ get loaded at ~8 PM
¢ need to finish by ~6 AM
o take ~1 to 3 hours to run
draw ~1.5 to 2 kW while running

<

there are ~80 million dishwashers in the US
e at ~1.5 kW each, that's ~120 GW of flexible capacity

clothes washers and dryers may have similar flexibility
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Small wind turbines

e wind turbine power output p scales like wind speed v cubed
e and wind speed scales like turbine height y to the oo =~ 0.2

p v\ v (y\*® p (v
@ @) - 2+
Po %) Vo Yo Po Yo

p/po

o

0 y/¥o 10

—> smaller turbines are typically less attractive economically
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The world’s biggest wind turbine has 130 m blades

a Boeing 747 is 71 m long

New Atlas: World's largest wind turbine is now fully operational and connected
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https://newatlas.com/energy/worlds-largest-wind-turbine-myse-16-260/

Simple wind power simulation

get wind speed V at whatever height y weather data report

e estimate wind speed v at turbine height y by v ~ ¥/(y/7)%?

get turbine's cut-in and cut-out speeds, v and v
ifv<v<yv,
o get turbine's rated power py at rated wind speed v
o estimate power p at wind speed v by p ~ po(v/v)3

otherwise, set p =0
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Things that use fuel

some things burn fuel for heat or work

¢ heaters fueled by wood, methane, propane, or heating oil

¢ diesel generators

© combined heat and power (‘cogeneration’ or ‘trigeneration’)
others use fuel without combustion

© methane fuel cells
¢ hydrogen fuel cells

potentially useful for backup, stabilizing microgrids, ...

can model (roughly) via “output = efficiency x input”
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Combined heat and power

Air inlet E
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Heat-recovery
steam generator

Vapor
cycle

Pump

Moran et al., Fundamentals of Engineering Thermodynamics (2018)
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