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Our goal in studying optimization in ME 597

to become good users of convex optimization for DER applications

• optimization is a broad and deep field

• most optimization problems are intractable

• but convex problems are (usually) tractable

� rich theory
� efficient, reliable algorithms
� convenient modeling software
� often solved in subroutines for nonconvex problems
� applications in engineering, science, economics, . . .

• we won’t go deep, but you can (and should!) in other classes
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Optimization problems

• choose x ∈ Rn

• to minimize f0(x)

• subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0

• given f0, . . . , fm : Rn → R
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Problem interpretation

• ‘choose the best feasible n-vector’

• the variable x = (x1, . . . , xn) is the choice made

• the objective f0(x) quantifies ‘how bad’ x is

• x is feasible if

� f0, . . . , fm are all defined at x
(for example, log : R→ R is defined only for x > 0)

� x satisfies all the constraints: f1(x) ≤ 0, . . . , fm(x) ≤ 0
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Example: Solar photovoltaic array design

• choose solar array size (# panels or rated power) and orientation

• possible objectives:

� initial cost (hardware, permitting, installation, . . . )
� electricity revenues or cost savings
� greenhouse gas emission reductions

• possible constraints:

� budget
� usable rooftop or ground area
� panel power output equations
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Example: Electric vehicle charging

• choose charging powers at each time over a planning horizon

• possible objectives:

� electricity costs
� greenhouse gas emissions
� peak electricity demand

• possible constraints:

� battery energy and power capacities
� battery dynamics
� charging deadline
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Equivalent problems

two problems are equivalent if

• a solution to the first readily yields a solution to the second

• and vice versa
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Maximization and minimization

• suppose g : Rn → R quantifies ‘how good’ x is

• the maximization problem

� choose x ∈ Rn

� to maximize g(x)
� subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0

is equivalent to the minimization problem

� choose x ∈ Rn

� to minimize −g(x)
� subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0
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Constant objective terms

for any constant a ∈ R, the problem

• choose x ∈ Rn

• to minimize f0(x) + a

• subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0

is equivalent to

• choose x ∈ Rn

• to minimize f0(x)

• subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0
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Objective and constraint transformations

• suppose

� h : R→ R is increasing, meaning y > z =⇒ h(y) > h(z)
� g1, . . . , gm : R→ R satisfy gi (y) ≤ 0 ⇐⇒ y ≤ 0

• then the problem

� choose x ∈ Rn

� to minimize f0(x)
� subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0

is equivalent to

� choose x ∈ Rn

� to minimize h(f0(x))
� subject to g1(f1(x)) ≤ 0, . . . , gm(fm(x)) ≤ 0
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Constraints with nonzero righthand sides

• for g , h : Rn → R, the inequality constraint

g(x) ≤ h(x)

is equivalent to f1(x) ≤ 0 with f1(x) = g(x)− h(x)

• similarly,
g(x) ≥ h(x)

is equivalent to f2(x) ≤ 0 with f2(x) = h(x)− g(x)
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Equality constraints

for g , h : Rn → R, the equality constraint

g(x) = h(x)

is equivalent to the two inequality constraints

g(x) ≤ h(x) and g(x) ≥ h(x),

which are equivalent to

f1(x) ≤ 0 and f2(x) ≤ 0

with f1(x) = g(x)− h(x) and f2(x) = h(x)− g(x)
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Feasibility problems

• suppose we only want to

� find any x ∈ Rn

� satisfying f1(x) ≤ 0, . . . , fm(x) ≤ 0

• this is equivalent to the optimization problem

� choose x ∈ Rn

� to minimize 0
� subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0
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Feasibility problems (example)

solving the system of nonlinear equations

g1(x) = h1(x), . . . , gm(x) = hm(x)

is equivalent to solving the feasibility problem

• find x ∈ Rn

• subject to gi (x)− hi (x) ≤ 0, hi (x)− g(x) ≤ 0, i = 1, . . . , m
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Infeasible and unbounded problems

a problem is

• infeasible if no feasible x exists
example: minimize x ∈ R subject to x ≥ 2, x2 ≤ 1

• unbounded if there is a sequence of feasible x(k) such that

f0(x(k))→ −∞ as k →∞

example: minimize log(x) (take x(1) = 1, x(k + 1) = x(k)/2)

x

log(x)
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Optimality

• an x? ∈ Rn is optimal (or an optimizer) if

� x? is feasible
� f0(x?) ≤ f0(x) for all feasible x

• infeasible problems have no optimizers

• unbounded problems have no optimizers

• feasible, bounded problems can have multiple optimizers

� example: choose x ∈ R2 to minimize x2 subject to x2 = 1

x1

x2

←
{
x ∈ R2

∣∣ x2 = 1
}

minimization direction

15 / 30



Local optimality

• an x̃ is locally optimal (or a local optimizer) if

� x̃ is feasible
� f0(x̃) ≤ f0(x) for all feasible x in a neighborhood of x̃

• an unlucky local optimizer x̃ might have f0(x̃)� f0(x?)

f0(x)

x
x̃

f0(x̃)

x?

f0(x?)
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Tractable optimization problems

• few optimization problems can be solved analytically

• but many can be solved numerically

• in general, global solve times grow exponentially in n and m

• often, local solve times grow only polynomially in n and m
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Intractable example: The knapsack problem

• choose x ∈ Rn

• to maximize c>x

• subject to a>x ≤ b and x1, . . . , xn ∈ {0, 1}
• given c ∈ Rn, a ∈ Rn, b ∈ R

• prove a polynomial-time algorithm? earn $1 million
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Local and global optimization

• a local optimizer x̃

� can usually be computed efficiently
� but might be far worse than a global x? (f0(x̃)� f0(x?))

• a global optimizer x?

� gives the best feasible performance
� but might be very slow to compute

• for convex problems, all local optimizers are global optimizers
(more on convexity next lecture)
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Least squares

• choose x ∈ Rn

• to minimize (Ax − b)>(Ax − b)

• given A ∈ Rm×n, b ∈ Rm, m ≥ n (so A is tall)

• idea: no x ∈ Rn exactly satisfies all m equations in “Ax = b”

• so least squares finds an x with Ax ≈ b

• analytical solution: x? = (A>A)−1A>b (A\b in Matlab)
(assuming A has linearly independent columns)

• solve time is ∼proportional to n2m
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Least squares solution

• for f (x) = x>Px + q>x + r with P = P> ∈ Rn×n,

∇f (x) = 2Px + q

• least squares has P = A>A = P>, q = −2A>b:

(Ax − b)>(Ax − b) = (x>A> − b>)(Ax − b)

= x>A>Ax − x>A>b − b>Ax + b>b

= x>A>Ax − 2b>Ax + b>b

(recalling that (CD)> = D>C> for matrices C and D)

• setting the gradient equal to zero gives

2A>Ax? − 2A>b = 0 ⇐⇒ x? = (A>A)−1A>b

provided A>A is invertible (rankA = n)
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One least squares interpretation: Model fitting

• bi is observation i of a target we want to predict
(e.g., a community’s electricity demand)

• Ai1, . . . , Ain are observations i of n predictive features
(e.g., outdoor temperature, hour, weekday, season, . . . )

• x1, . . . , xn are parameters in a prediction model

• problem: choose x so that x1Ai1 + · · ·+ xnAin ≈ bi for all i

• the least squares objective

(Ax − b)>(Ax − b) =
m∑
i=1

(x1Ai1 + · · ·+ xnAin − bi )
2

penalizes errors between x1Ai1 + · · ·+ xnAin and bi for all i
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Linear programming

• choose x ∈ Rn

• to minimize c>x

• subject to Ax � b
(notation: for y , z ∈ Rn, y � z means y1 ≤ z1, . . . , yn ≤ zn)

• given A ∈ Rm×n, b ∈ Rm, c ∈ Rn

• no analytical solution, but good algorithms

• solve time is ∼proportional to n2m

• tricks can transform nonlinear problems into linear programs
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Linear programming example: Chebyshev approximation

• x , A, b have same interpretations at least squares example
(parameter vector, feature matrix, target vector)

• same goal: choose x so that x1Ai1 + · · ·+ xnAin ≈ bi for all i

• instead of the least squares objective (sum of squared errors)

m∑
i=1

(x1Ai1 + · · ·+ xnAin − bi )
2,

use the maximum absolute error

max
i=1,...,m

|x1Ai1 + · · ·+ xnAin − bi |

• this is not a linear program, but can be transformed into one
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Chebyshev approximation as a linear program

• the Chebyshev approximation problem is to

� choose x ∈ Rn

� to minimize maxi=1,...,m |x1Ai1 + · · ·+ xnAin − bi |
• equivalently,

� choose (x , y) ∈ Rn+1

� to minimize y
� subject to |x1Ai1 + · · ·+ xnAin − bi | ≤ y , i = 1, . . . , m

• still not a linear program, but closer
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Chebyshev approximation as a linear program (continued)

u

u−u

v

• for any u, v ∈ R, |u| ≤ v ⇐⇒ u ≤ v and −u ≤ v

• so an equivalent problem to Chebyshev approximation is to

� choose (x , y) ∈ Rn+1

� to minimize y
� subject to

x1Ai1 + · · ·+ xnAin − bi ≤ y , i = 1, . . . , m
−(x1Ai1 + · · ·+ xnAin − bi ) ≤ y , i = 1, . . . , m

• a linear program with n + 1 variables and 2m constraints
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Model fitting example

• noisy data generated from unknown function of z : bi = f (zi )

• goal: approximate each bi by cubic, x1 + x2zi + x3z
2
i + x4z

3
i

• so n = 4 and Aij = z j−1i
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Convex optimization

• choose x ∈ Rn

• to minimize f0(x)

• subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0

• given convex f0, . . . , fm : Rn → R

• no analytical solution, but good algorithms

• solve time is ∼proportional to max
{
n3, n2m

}
• includes least squares, linear programming, and much more
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How to use convex optimization

• formulate your problem

• hopefully, recognize it as convex

• otherwise, reformulate or approximate it as convex

• code it in a convex modeling language
(CVX, CVXPY, Convex.jl, CVXR, . . . )

• tell modeling language to pass your problem to a solver
(SeDuMi, SDPT3, Gurobi, MOSEK, GLPK, . . . )

• check solution, tune formulation, repeat until satisfied
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Coming soon

• convex sets and functions

• solving convex optimization problems

• DER optimization examples
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