Overview of optimization
Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

these slides draw on materials by Stephen Boyd at Stanford
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https://kevinjkircher.com
https://stanford.edu/~boyd/teaching.html

Optimization problems



Our goal in studying optimization in ME 597

to become good users of convex optimization for DER applications

e optimization is a broad and deep field

e most optimization problems are intractable
e but convex problems are (usually) tractable

o rich theory

efficient, reliable algorithms

convenient modeling software

often solved in subroutines for nonconvex problems
applications in engineering, science, economics, ...

000

e we won't go deep, but you can (and should!) in other classes
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Optimization problems

choose x € R”

to minimize fy(x)
subject to f1(x) <0, ..., fm(x) <0
givenfg, ..., fn :R" = R
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Problem interpretation

‘choose the best feasible n-vector’

the variable x = (xi,..., x,) is the choice made

the objective fy(x) quantifies ‘how bad’ x is
x is feasible if

o fy, ..., fmy are all defined at x
(for example, log : R — R is defined only for x > 0)
o x satisfies all the constraints: fi(x) <0, ..., fn(x) <0
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Example: Solar photovoltaic array design

e choose solar array size (# panels or rated power) and orientation
e possible objectives:

© initial cost (hardware, permitting, installation, ...)

o electricity revenues or cost savings

© greenhouse gas emission reductions
e possible constraints:

© budget

< usable rooftop or ground area

© panel power output equations
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Example: Electric vehicle charging

e choose charging powers at each time over a planning horizon
e possible objectives:

o electricity costs

© greenhouse gas emissions

o peak electricity demand
e possible constraints:

¢ battery energy and power capacities

© battery dynamics

o charging deadline
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Equivalent problems

two problems are equivalent if
e a solution to the first readily yields a solution to the second

e and vice versa
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Maximization and minimization

e suppose g : R” — R quantifies ‘how good’ x is
e the maximization problem
© choose x € R”
© to maximize g(x)
o subject to f1(x) <0, ..., fn(x) <0
is equivalent to the minimization problem
© choose x € R”
© to minimize —g(x)
o subject to f1(x) <0, ..., fm(x) <0
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Constant objective terms

for any constant a € R, the problem

e choose x € R”

e to minimize fy(x) + a

e subject to fi(x) <0, ..., fin(x) <0
is equivalent to

e choose x € R"

e to minimize fy(x

e subject to f1(x) <0, ..., fm(x) <0
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Objective and constraint transformations

® suppose

o h:R — Ris increasing, meaning y > z = h(y) > h(z)

© g1, ..., 8m: R — Rsatisfy gi(y) <0 <= y <0
e then the problem

o choose x € R”

© to minimize fy(x)

o subject to 1(x) <0, ..., fm(x) <0

is equivalent to

¢ choose x € R”

© to minimize h(fy(x))

o subject to g1(f1(x)) <0, ..., gn(fn(x)) <0
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Constraints with nonzero righthand sides

e for g, h: R" — R, the inequality constraint

g(x) < h(x)

is equivalent to fi(x) < 0 with fi(x) = g(x) — h(x)
e similarly,
g(x) = h(x)
is equivalent to f(x) < 0 with f(x) = h(x) — g(x)

10/30



Equality constraints

for g, h: R" — R, the equality constraint

is equivalent to the two inequality constraints
g(x) < h(x) and g(x) > h(x),
which are equivalent to
fi(x) <0and f(x) <0

with f1(x) = g(x) — h(x) and f(x) = h(x) — g(x)
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Feasibility problems

e suppose we only want to
¢ find any x € R”
o satisfying f1(x) <0, ..., fim(x) <0
e this is equivalent to the optimization problem

¢ choose x € R”
& to minimize 0
o subject to f1(x) <0, ..., fn(x) <0
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Feasibility problems (example)

solving the system of nonlinear equations

g1(x) = hi(x), ..., gm(x) = hm(x)
is equivalent to solving the feasibility problem
e find x € R”
e subject to gi(x) — hi(x) <0, hi(x) —g(x) <0,i=1 ..., m
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Optimization vocabulary



Infeasible and unbounded problems

a problem is

e infeasible if no feasible x exists
example: minimize x € R subject to x > 2, x> < 1

e unbounded if there is a sequence of feasible x(k) such that
fo(x(k)) — —o0 as k — oo
example: minimize log(x) (take x(1) =1, x(k + 1) = x(k)/2)
log(x)
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Optimality

e an x* € R” is optimal (or an optimizer) if
o x* is feasible
o fo(x*) < fo(x) for all feasible x

e infeasible problems have no optimizers
e unbounded problems have no optimizers

e feasible, bounded problems can have multiple optimizers
o example: choose x € R? to minimize x, subject to xp = 1

minimization direction

I

—{xeR?|xx=1}

X1
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Local optimality

e an X is locally optimal (or a local optimizer) if
o X is feasible
o fo(X) < fo(x) for all feasible x in a neighborhood of X

e an unlucky local optimizer X might have fp(X) > fo(x*)
fo(x)
fo(%)




Tractable optimization problems



Tractable optimization problems

few optimization problems can be solved analytically

but many can be solved numerically

e in general, global solve times grow exponentially in n and m

e often, local solve times grow only polynomially in n and m
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Intractable example: The knapsack problem

choose x € R"
to maximize ¢! x
subject to a'x < band xq, ..., x, € {0,1}

givenc e R", aeR", beR

prove a polynomial-time algorithm? earn $1 million
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https://en.wikipedia.org/wiki/Millennium_Prize_Problems

Local and global optimization

e a local optimizer X

¢ can usually be computed efficiently
¢ but might be far worse than a global x* (f(X) > fo(x*))

e a global optimizer x*

o gives the best feasible performance
¢ but might be very slow to compute

e for convex problems, all local optimizers are global optimizers
(more on convexity next lecture)
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Least squares

e choose x € R"
e to minimize (Ax — b)T (Ax — b)
e given Ac R™" be R™ m>n (so Ais tall)

e idea: no x € R" exactly satisfies all m equations in "Ax = b"

e so least squares finds an x with Ax =~ b

e analytical solution: x* = (AT A)"YA"b (A\b in Matlab)
(assuming A has linearly independent columns)

e solve time is ~proportional to n’°m
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Least squares solution

e for f(x) = x"Px+q"x+ r with P=PT € R™",
Vfi(x)=2Px+gq
e least squares has P=ATA=PT, g= —2A"b:
(Ax — b)T(Ax — b) = (x"AT — b")(Ax — b)
=x"ATAx —x"ATb—b"Ax+b'b
=x"ATAx —2b"Ax+b'b
(recalling that (CD)" = DT CT for matrices C and D)
e setting the gradient equal to zero gives
2ATAx* —2ATh =0 «— x* = (ATA)1ATh
provided AT A is invertible (rank A = n)
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One least squares interpretation: Model fitting

b; is observation i of a target we want to predict
(e.g., a community's electricity demand)

Ai1, ..., Aj, are observations i of n predictive features
(e.g., outdoor temperature, hour, weekday, season, ... )

® X1, ..., X, are parameters in a prediction model

problem: choose x so that xyAj1 + - -+ + x,Ajn = b; for all i

the least squares objective

(Ax = b)T(Ax = b) = (1A + - + XnAin — b;)?
i=1

penalizes errors between x1Aj1 + - -+ 4+ xp,A;n and b; for all i
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Linear programming

e choose x € R”
e to minimize ¢! x

e subject to Ax < b
(notation: for y, z€ R", y < zmeans y1 < z1, ..., ¥n < 2,)

e given Ac R™" he R™ ceR"

e no analytical solution, but good algorithms
e solve time is ~proportional to n’m

e tricks can transform nonlinear problems into linear programs
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Linear programming example: Chebyshev approximation

e x, A, b have same interpretations at least squares example
(parameter vector, feature matrix, target vector)

e same goal: choose x so that x; A1 + -+ - + xpAjn = b; for all i

e instead of the least squares objective (sum of squared errors)
m
Z(XlAil + -+ XnAin - bi)27
i=1

use the maximum absolute error

_max_[x1Aj + -+ xpAin — bl

i=1,....m

e this is not a linear program, but can be transformed into one
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Chebyshev approximation as a linear program

e the Chebyshev approximation problem is to

¢ choose x € R”

& to minimize max;=1,...,m |X1A,'1 + o+ XAl — b,|
e equivalently,

o choose (x,y) € R™1
© to minimize y
¢ subject to |X1Ai1+-~-+XnA;n— b,| <y, i=1 ..., m

e still not a linear program, but closer
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Chebyshev approximation as a linear program (continued)

u

o foranyu, veR, Ju/<v < u<vand —u<v
e 50 an equivalent problem to Chebyshev approximation is to

o choose (x,y) € R™1

© to minimize y

¢ subject to
XAl + -+ xAn—bi <y, i=1 ..., m
—(a A+ XA —b) Sy i=1,..., m

e a linear program with n+ 1 variables and 2m constraints
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Model fitting example

e noisy data generated from unknown function of z: b; = f(z)
e goal: approximate each b; by cubic, x3 + x2z; + X3z,-2 + X4z,-3
e son=14%and A,-J-:z,!_1
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Convex optimization

e choose x € R"
e to minimize fy(x)
e subject to f1(x) <0, ..., fn(x) <0

e given convex fy, ..., f, : R" = R

e no analytical solution, but good algorithms
e solve time is ~proportional to max {n®, n’m}

e includes least squares, linear programming, and much more
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How to use convex optimization

e formulate your problem
e hopefully, recognize it as convex
e otherwise, reformulate or approximate it as convex

e code it in a convex modeling language
(CVX, CVXPY, Convex.jl, CVXR, ...)

o tell modeling language to pass your problem to a solver
(SeDuMi, SDPT3, Gurobi, MOSEK, GLPK, ...)

e check solution, tune formulation, repeat until satisfied

29 /30



Coming soon

e convex sets and functions
e solving convex optimization problems

e DER optimization examples
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