Solving convex optimization problems
Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

these slides draw on materials by Stephen Boyd at Stanford

0/32

https://kevinjkircher.com
https://stanford.edu/~boyd/teaching.html

Disciplined convex programming in CVX

Disciplined convex programming

e is a framework for describing convex optimization problems
e uses a library of functions with curvature, monotonicity tags
e imposes rules for compositions of functions

e is sufficient but not necessary for certifying convexity

1/32

Disciplined convex program structure

e (scalar) objective can be
© minimize convex
¢ maximize concave
o omitted (for feasibility problems)
e constraints can be
© convex <= concave
¢ concave >= convex
o affine == affine
© omitted (for unconstrained problems)

* affine functions are both convex and concave

2/32

implements disciplined convex programming in Matlab

transforms user-specified convex programs into standard form
passes standard-form problems to solvers
interprets solver status (solved, infeasible, unbounded, ...)

if solved, transforms solutions back to user-specified forms

3/32

cvx_begin
variable x(n,1)
minimize(norm(x,Inf))
subject to
Axx ==
cvx_end

e constants A € R™" b € R™ are defined above CVX scope

e within CVX scope, x is a variable
e after cvx_end, CVX populates

o cvx_status with solver's exit status
o x with solution (if cvx_status is Solved)

4/32

CVX syntax (continued)

indentation doesn’'t matter

‘subject to' is unnecessary, but can improve readability

equality constraints use ==, not = (assignment)

CVX interprets inequalities like x >= 0 elementwise

e CVX does not require an initial guess or function derivatives

5/32

Infeasible problems

if problem instance is infeasible, CVX populates
e cvx_status with Infeasible

e cach element of x with NaN

6/32

Unbounded problems

e if problem instance is unbounded, CVX populates

© cvx_status with Unbounded
© x with a direction in which problem is unbounded

e the direction x is likely not feasible, but for any feasible X,

o X + ax is feasible for all @« > 0
¢ objective value of X + ax improves without bound as o — oo

e to get a feasible X, omit objective and re-solve as feasibility problem

7/32

Some example functions

function meaning attributes

max (x) max {xi1,...,x,} | convex nondecreasing
min(x) min {xi,...,x,} | concave nondecreasing
pos (x) max {0, x} convex nondecreasing
square_pos(x) | max{0, x}2 convex nondecreasing
inv_pos (x) 1/x (for x > 0) | convex nonincreasing
sqrt (x) V/x (for x > 0) | concave nondecreasing
norm(x,p) X1, convex
sum_square(x) | xi + -+ X3 convex

8/32

Quadratic forms

e for P € R"™" xTPx is a quadratic form in x € R”

e can assume P is symmetric; if it's not, replace P by (P + P")/2:

x"(P+PN)x/2=(x"Px+x"P'x)/2
(x"Px+(x"PTx)T)/2
= (x" Px+x"Px)/2

= x| Px

e in CVX, x"Px is quad_form(x,P)

9/32

Convexity and quadratic forms

e a symmetric P € R™" is positive semidefinite (P = 0) if
x " Px >0 for all x

(< detP >0 <= \; >0 for all eigenvalues \; of P)
e a symmetric P € R™" is positive definite (P > 0) if

x"Px >0 forall x #0

(<= detP >0 <= \; > 0 for all eigenvalues \; of P)

e the quadratic form x ' Px is

o convex if P >0
o strictly convex (so has a unique global minimum) if P > 0

10/32

Quadratic forms in CVX

e quad_form and sum_square tend to be slow
e using norm instead can improve speed and accuracy

e for example, minimizing the least squares objective
sum_square (A*x - b) = (Ax — b)T(Ax — b) = ||Ax — b||3

can typically be done faster by minimizing
norm(A*x - b) = ||Ax — b||, = /[|Ax — b||3
e these problems are equivalent since
o if g is increasing, minimize g(f(x)) <= minimize f(x)

o /- with nonnegative arguments is increasing
2. .
o |]||5 is nonnegative

11/32

Quadratic forms in CVX (continued)

another example: (convex) constraint x' Px < ¢ with x € R"

if P 0, it has a square root R € R™" with RTR =P
(in Matlab, R = chol(P) computes an upper triangular R)

since [lyll, = vyTy,
x| Px <c
<~ xR Rx <c
= [IRx|3 < c

— |IRxll, < Ve

in CVX, quad_form(x,P) <= c usually works

but norm(chol (P)*x) <= sqrt(c) is usually faster

12 /32

Examples

Least squares

e choose x to minimize ||Ax — b||§ given A€ R™" b
e random problem instance:

o n =500, m= 1000
¢ independent standard normal A and b

e computing the least squares solution
x*=(ATA)TATh = A\b

takes 0.0145 s on a 2.7 GHz processor

13/32

Least squares: CVX sum_square solution

cvx_begin

variable x(n,1)

minimize(sum_square(A*x - b))
cvx_end

e solvesin 2.32 s

e agrees with A\b to nine decimal places

14 /32

Least squares: CVX norm solution

cvx_begin

variable x(n,1)

minimize(norm(A*x - b))
cvx_end

e solves in 1.35 s (42% less than sum_square)

e also agrees with A\b to nine decimal places

15 /32

Least squares: disciplined convex programming error

cvx_begin

variable x(n,1)

minimize(norm(A*x - b)~2)
cvx_end

Disciplined convex programming error:
Illegal operation: {convex} .~ {2}
(Consider POW_P, POW_P0OS, or POW_ABS instead.)

e square of norm matches no composition rule
(a convex function of a convex function may not be convex)

e but CVX would allow square_pos(norm(A*x - b)) since
square_pos (z) = max {0, z}?

is convex and nondecreasing

16 /32

Optimization algorithms

Why learn about optimization algorithms?

tools like CVX require no knowledge of how solvers work

but knowing a bit can help with debugging, interpreting results

also, optimization algorithms can be clever and beautiful

we'll just scratch the surface; other classes go much deeper

17 /32

Smooth unconstrained convex optimization

e choose x € R”

e to minimize f(x)

e given smooth convex f : R” — R

e optimality condition is Vf(x*) = 0 (n equations, n unknowns)

o for example, if f(x) = x"Px +q' x + r, then
Vi(x*)=2Px*+q=0

is a system of linear equations that can be solved efficiently
(if P is invertible, then x* = —P~1q/2 is the unique solution)

e but general nonquadratic f require iterative methods

18 /32

[terative methods

iterative methods
e typically require an initial guess x(0) € dom f
e produce a sequence of iterates x(1), x(2), ...€ domf
e converge if f(x(k)) — f(x*) and Vf(x(k)) — 0 as k — o0

19/32

Descent methods

e given initial guess x(0) € domf, repeat:

1. find a descent direction d(k)

2. find a step size a(k)

3. update x(k + 1) = x(k) + a(k)d(k)

4. increment k

until a stopping condition (such as ||V f(x(k))|l small) holds

e descent direction and step size should satisfy

o x(k) + a(k)d(k) € dom f

o f(x(k) + a(k)d(k)) < f(x(k))

20 /32

Finding a good step size a(k)

finding a good step size is called a line search
if a(k) is too small, f(x(k + 1)) < f(x(k)) but progress is slow
if (k) is too big, we risk f(x(k + 1)) > f(x(k))
one simple line search method:

o while f(x(k) + a(k)d(k)) > f(x(k)),

> set a(k) + a(k)/2
o set x(k + 1) = x(k) + a(k)d(k)
o set a(k + 1) = 1.2a(k)

21/32

Gradient descent

e —Vf(x) points in the direction of steepest descent of f at x

e so gradient descent uses descent direction
d(k) = =Vf(x(k))

e worst case: requires ~1/¢ iterations to get f(x(k)) — f(x*) < e
(for example, ~10% iterations to get f(x(k)) — f(x*) < 107%)

22/32

Gradient descent illustration

Boyd and Vandenberghe (2004), Convex Optimization
23 /32

https://web.stanford.edu/~boyd/cvxbook/

Minimizing quadratic approximations

e Taylor's theorem: the quadratic approximation to f at X is

N 1

FO) = F(R) + VAR (x = %) + 5(x = %) V2F(R)(x = %)
e V2f(X) € R™" is the second derivative (Hessian) matrix:

82
()i = Ox;0x; Ox; |4

e some algebra shows that if the Hessian is invertible, then
R =% - V2f(%)7IVF()

minimizes £(x)

24 /32

Quadratic approximation illustration

Xib-------
X F-----

25 /32

Newton's method

e Newton's method uses the descent direction
d(k) = —=V?F(x(k)) " VF(x(k))

that minimizes the quadratic approximation to f at x(k)

e worst case: requires ~1/,/¢ iterations to get f(x(k)) — f(x*) <e
(for example, ~10? iterations to get f(x(k)) — f(x*) < 10~%)

26 /32

=
.0
)
Q]
—
4
(2]
=
e
o

Newton's m

Boyd and Vandenberghe (2004), Convex Optimization

27 /32

https://web.stanford.edu/~boyd/cvxbook/

Smooth constrained convex optimization

choose x € R"

to minimize fy(x)
subject to f1(x) <0, ..., fm(x) <0
e given smooth convex fy, ..., f, : R" = R

28 /32

Logarithmic barrier

e equivalent problem: minimize fo(x) 4+ > -7, I_(fi(x)), where

/44:{0 if z<0

oo otherwise

is the indicator function of {z € R | z < 0}

e idea: for a nondecreasing sequence of t > 0, minimize
1 m
60— 3 3 el
1=

e logarithmic barrier function —log(—z)/t approximates /_(z)

e approximation improves as t increases

29 /32

Logarithmic barrier approaches indicator as t increases

—log(—2z)/t with t =1
30/32

Barrier methods

given t(0) > 0, v > 1, initial guess x(0) € dom fy, repeat:
1. set x(k 4+ 1) by minimizing fo(x) — ﬁ > log(—fi(x))
2. set t(k +1) =~t(k)

until a stopping condition (such as t large) holds

step 1 typically uses Newton's method, initialized at x(k)

trade-off: v 1 = outer iterations | but Newton iterations 1

barrier methods converge at a rate similar to Newton's method

31/32

Interior-point methods

e are used by most solvers that CVX calls

e are conceptually similar to barrier methods

e do not need user-specified initial guesses or function derivatives
e have polynomial-time guarantees on worst-case complexity

e are often very fast in practice
e are typically faster for narrower problem classes:

o linear programming (easiest)

© quadratic programming

© second-order cone programming

© semidefinite programming (hardest)

32/32

	Disciplined convex programming in CVX
	Examples
	Optimization algorithms

