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Battery model reminders

x(k + 1) = ax(k) + (1− a)τpchem(k), a = e−∆t/τ

p(k) = max
{
pchem(k)/ηc , ηdp

chem(k)
}

x ≤ x(k) ≤ x

−pd ≤ p(k) ≤ pc ⇐⇒ −pd
ηd
≤ pchem(k) ≤ ηcpc
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Chemical and electrical power

chemical power to battery
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Problem formulation

• choose

� x = (x(0), . . . , x(K )) ∈ RK+1

� pchem = (pchem(0), . . . , pchem(K − 1)) ∈ RK

� p = (p(0), . . . , p(K − 1)) ∈ RK

• to minimize ∆tπ>p

• subject to x(0) = x0 and for k = 0, . . . , K − 1,

� x(k + 1) = ax(k) + (1− a)τpchem(k)
� p(k) = max

{
pchem(k)/ηc , ηdp

chem(k)
}

� x ≤ x(k + 1) ≤ x
� −pd/ηd ≤ pchem(k) ≤ ηcpc

• given ∆t, π ∈ RK , x0, a, τ , ηc , ηd , x , x , pc , pd
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CVX code

cvx begin

variables x(K+1,1) pChem(K,1) p(K,1)

minimize( dt*pie’*p )

subject to

x(1) == x0

x(2:K+1) == a*x(1:K) + (1-a)*tau*pChem

p == max(pChem/etac, etad*pChem)

xMin <= x(2:K+1) <= xMax

-pdMax/etad <= pChem <= etac*pcMax

cvx end

Disciplined convex programming error:

Invalid constraint: {real affine} == {convex}
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CVX code

cvx_begin

variables x(K+1,1) pChem(K,1)

minimize( dt*pie’*max(pChem/etac, etad*pChem) )

subject to

x(1) == x0

x(2:K+1) == a*x(1:K) + (1-a)*tau*pChem

xMin <= x(2:K+1) <= xMax

-pdMax/etad <= pChem <= etac*pcMax

cvx_end
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Constant energy price
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Problem revision options

1. add final constraint such as x(K ) = x(0) or x(K ) ≥ x(0)

2. add objective rewarding larger final state x(K ): minimize

∆t(π(0)p(0) + · · ·+ π(K − 1)p(K − 1))− π̃x(K )

for some tunable final price π̃ ($/kWh)

7 / 31



Constant energy price, add constraint x(K ) ≥ x(0)
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Constant energy price, objective ∆tπ1>p − π̃x(K )
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Constant energy price, objective ∆tπ1>p − π̃x(K )
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Constant energy price, objective ∆tπ1>p − π̃x(K )
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Optimal final energy depends nonsmoothly on final price
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Constant energy price, x(K ) = x(0), no initial condition
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Two-tiered energy price
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Three-tiered energy price
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Real-time energy price
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Real-time energy price, objective ∆tπ>p + πd max(p)
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Negative energy price

pie(1) = -pie(1);

cvx_begin

variables x(K+1,1) pChem(K,1)

minimize( dt*pie’*max(pChem/etac, etad*pChem) )

subject to

x(K+1) == x(1)

x(2:K+1) == a*x(1:K) + (1-a)*tau*pChem

xMin <= x(2:K+1) <= xMax

-pdMax/etad <= pChem <= etac*pcMax

cvx_end

Disciplined convex programming error:

Illegal affine combination of convex and/or concave

terms detected.
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Summary: DER objectives to minimize over p

objective curvature monotonicity

energy AFF ND
energy cost AFF ND
energy cost (negative price) AFF NI
energy cost (reduced net metering) CVX ND
pollution AFF ND
pollution cost AFF ND
reference tracking error CVX not monotone
peak demand CVX ND
−(upward flexibility) AFF ND
−(downward flexibility) AFF NI
−(symmetric flexibility) CVX not monotone
−(load reduction) CCV ND
−(load reduction approximation) AFF ND
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Options for dealing with nonmonotone objectives

approximate electrical power as affine in the basic variables

1. assume perfect charging and discharging efficiencies:

ηd = ηc = 1 =⇒ p = pchem

2. choose charging and discharging powers separately:

p = pc − pd , 0 ≤ pc ≤ pc , 0 ≤ pd ≤ pd

x(k + 1) = ax(k) + (1− a)τ(ηcpc(k)− pd(k)/ηd)
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Perfect charging and discharging efficiencies

• choose

� x(0), . . . , x(K )
� p(0), . . . , p(K − 1)

• to minimize ∆tπ>p

• subject to x(K ) = x(0) and for k = 0, . . . , K − 1,

� x(k + 1) = ax(k) + (1− a)τp(k)
� x ≤ x(k + 1) ≤ x
� −pd ≤ p(k) ≤ pc

• given ∆t, π, x0, a, τ , x , x , pc , pd
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Overestimation of stored energy
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Separate charging and discharging powers

• choose

� x(0), . . . , x(K )
� charging electrical powers pc(0), . . . , pc(K − 1)
� discharging electrical powers pd(0), . . . , pd(K − 1)

• to minimize ∆tπ>(pc − pd)

• subject to x(K ) = x(0) and for k = 0, . . . , K − 1,

� x(k + 1) = ax(k) + (1− a)τ(ηcpc(k)− pd(k)/ηd)
� x ≤ x(k + 1) ≤ x
� 0 ≤ pc(k) ≤ pc
� 0 ≤ pd(k) ≤ pd

• given ∆t, π, x0, a, τ , ηc , ηd , x , x , pc , pd
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(Unphysical) simultaneous charging and discharging
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(Unphysical) simultaneous charging and discharging
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Reference tracking, objective ∆tπ>p + πt√
K
‖p − r‖2
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Weighing money now vs. money later

• most people would

� prefer $1,000 now to $1,000 next year
� trade $1,000 now for $1,000(1 + ρ) next year for some ρ > 0

• the present value of money m that will arrive next year is

m

1 + ρ

• the present value of money mn that will arrive n years from now is

mn

(1 + ρ)n
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Net present cost

if a project

• costs c0 to deploy today

• will last N years

• will (net-)cost c1, . . . , cN to operate in years 1, . . . , N

• will have salvage value s in year N

then its net present cost is

c0 +
c1

1 + ρ
+ · · ·+ cN − s

(1 + ρ)N
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Net present cost with constant annual costs

• if c1 = · · · = cN , then the net present cost is

c0 + c1

(
1

1 + ρ
+ · · ·+ 1

(1 + ρ)N

)
− s

(1 + ρ)N

= c0 + λc1 −
s

(1 + ρ)N

• can show (from partial sum of geometric series) that

λ =
1

1 + ρ
+ · · ·+ 1

(1 + ρ)N
=

1− (1 + ρ)−N

ρ
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Net present cost of a battery

• can model total installed cost as c0 =

{
0 x = 0

αx + β x > 0

� x (kWh) is the energy capacity
� α ($/kWh) is the energy capacity price
� β ($) is a fixed cost associated with installation labor, etc.

(for one popular home battery, α ≈ 520 $/kWh, β ≈ $4500)

• can model salvage value as s = γc0 for some γ ∈ [0, 1]

• with these models, net present cost (for x > 0) becomes

αx + β + λc1 −
γ(αx + β)

(1 + ρ)N
= πxx + λc1 + β

[
1− γ

(1 + ρ)N

]
where πx = α[1− γ/(1 + ρ)N ]

=⇒ to minimize net present cost, minimize πxx + λc1
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Joint sizing and operation example

• model energy and power capacities as x = µx , pd = pc = x/ν
(for example, µ ≈ 0.2, ν ≈ 2.7 h)

• define biggest feasible energy capacity E (kWh)

• choose

� x(0), . . . , x(K )
� pchem(0), . . . , pchem(K − 1)
� x

• to minimize πxx + 365λ∆tπ>max
{
pchem/ηc , ηdp

chem
}

• subject to x(K ) = x(0) and for k = 0, . . . , K − 1,

� x(k + 1) = ax(k) + (1− a)τpchem(k)
� µx ≤ x(k + 1) ≤ x
� −x/(νηd) ≤ pchem(k) ≤ ηcx/ν
� 0 ≤ x ≤ E

• given πx , λ, ∆t, π, ηc , ηd , x0, a, τ , µ, ν, E
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Operating profile with low energy capacity price πx
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Operating profile with high energy capacity price πx
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Optimal size vs. energy capacity price πx
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