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Example: Energy price arbitrage with grid constraint

bus
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• choose

� x = (x(0), . . . , x(K )) ∈ RK+1

� pc = (pc(0), . . . , pc(K − 1)) ∈ RK

� pd = (pd(0), . . . , pd(K − 1)) ∈ RK

• to maximize ∆tπ>(w + pd − pc)

• subject to x(0) = x0, x(K ) ≥ x(0), and for k = 0, . . . , K − 1,

� x(k + 1) = ax(k) + (1− a)τ [ηcpc(k)− pd(k)/ηd ]
� 0 ≤ x(k + 1) ≤ x
� 0 ≤ pc(k) ≤ pc
� 0 ≤ pd(k) ≤ pd
� |w(k) + pd(k)− pc(k)| ≤ pg

• given ∆t, π, ηc , ηd , x0, a, τ , x , pc , pd , pg , w
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MISO day-ahead electricity price
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Omniscient optimization for a clear day
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Omniscient optimization for a partly cloudy day
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Omniscient optimization for a cloudy day
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What if we’re not omniscient?

• the omniscient examples above assume

� perfect knowledge of the model structure and parameters
� perfect measurement of the initial stored energy
� perfect foreknowledge of solar power outputs and energy prices

• in reality, some or all of these assumptions may be bad

• for example, suppose

� our solar forecast is imperfect
� we use the forecast to make a plan and stick to it all day
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True and forecasted solar powers
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Planning with a forecast ŵ of solar power w

• choose

� x = (x(0), . . . , x(K )) ∈ RK+1

� pc = (pc(0), . . . , pc(K − 1)) ∈ RK

� pd = (pd(0), . . . , pd(K − 1)) ∈ RK

• to maximize ∆tπ>(ŵ + pd − pc)

• subject to x(0) = x0, x(K ) ≥ x(0), and for k = 0, . . . , K − 1,

� x(k + 1) = ax(k) + (1− a)τ [ηcpc(k)− pd(k)/ηd ]
� 0 ≤ x(k + 1) ≤ x
� 0 ≤ pc(k) ≤ pc
� 0 ≤ pd(k) ≤ pd
� |ŵ(k) + pd(k)− pc(k)| ≤ pg

• given ∆t, π, ηc , ηd , x0, a, τ , x , pc , pd , pg , ŵ
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Results from planning on ‘clear’, ŵ = w clr
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Results from planning on ‘partly cloudy’, ŵ = w pc
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Results from planning on ‘cloudy’, ŵ = w cld
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Effects of forecast errors

forecast
violation
frequency

conditional average
violation magnitude revenue

perfect 0% 0 kW $1.07
‘clear’ 4% 0.01 kW $1.00
‘partly cloudy’ 21% 0.2 kW $1.08
‘cloudy’ 25% 0.98 kW $1.06

how to hedge against risks of forecast errors?
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Risk-neutral planning

• recall that w only influences optimization through the

� objective: maximize ∆tπ>(w + pd − pc)
� grid interconnection constraint: |w(k) + pd(k)− pc(k)| ≤ pg

• a risk-neutral planning approach

� maximizes the expected revenue E
[
∆tπ>(w + pd − pc)

]
� replaces the ambiguous constraint

|w(k) + pd(k)− pc(k)| − pg ≤ 0

by the expected-value constraint

E
[
|w(k) + pd(k)− pc(k)| − pg

]
≤ 0
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Risk-neutral planning with w clr, w pc, w cld, equally likely
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Risk-neutral optimization more generally

• consider the (ambiguous) problem with uncertain vector δ

� choose x ∈ Rn

� to minimize f0(x , δ)
� subject to f1(x , δ) ≤ 0, . . . , fm(x , δ) ≤ 0
� given f0, . . . , fm and... something about δ ?!

• a risk-neutral approach models δ as random and solves

� choose x ∈ Rn

� to minimize Eδ f0(x , δ)
� subject to Eδ f1(x , δ) ≤ 0, . . . , Eδ fm(x , δ) ≤ 0,
� given f0, . . . , fm and the distribution of δ

(and the ability to compute the expectation integrals)
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(Maximally) risk-averse planning

a (maximally) risk-averse approach

• maximizes the worst-case revenue minw

[
∆tπ>(w + pd − pc)

]
• replaces the ambiguous constraint

|w(k) + pd(k)− pc(k)| − pg ≤ 0

by the worst-case constraint

max
w(k)

[
|w(k) + pd(k)− pc(k)| − pg

]
≤ 0
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Risk-averse planning with only w clr, w pc, w cld possible
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(Maximally) risk-averse optimization more generally

• consider the (ambiguous) problem with uncertain vector δ

� choose x ∈ Rn

� to minimize f0(x , δ)
� subject to f1(x , δ) ≤ 0, . . . , fm(x , δ) ≤ 0
� given f0, . . . , fm and... something about δ ?!

• a maximally risk-averse approach solves

� choose x ∈ Rn

� to minimize maxδ f0(x , δ)
� subject to maxδ f1(x , δ) ≤ 0, . . . , maxδ fm(x , δ) ≤ 0
� given f0, . . . , fm and the support of δ

(and the ability to compute the maxima over δ)
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Planning with mixed risk measures

it sometimes makes sense to mix risk measures; for example:

• risk-neutral objective: maximize E
[
∆tπ>(w + pd − pc)

]
• (maximally) risk-averse constraints:

max
w(k)

[
|w(k) + pd(k)− pc(k)| − pg

]
≤ 0

• in solar/battery example, results resemble risk-averse approach
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Other risk measures

• a risk measure R disambiguates ambiguous constraints

f (x , δ) ≤ 0 (ambiguous) −→ R[f (x , δ)] ≤ 0 (unambiguous)

• the expected value, R = Eδ, is risk-neutral

• the worst-case value, R = maxδ, is maximally risk-averse

• other risk measures interpolate between these extremes

� value-at-risk
� conditional value-at-risk
� entropic value-at-risk
� others. . .
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What if we don’t have to rigidly stick to our plan?

• often, we can update actions based on new information

• this option is called recourse

• exercising it gives rise to feedback

controller
(or agent)

system ob
servationac

ti
on

uncertainty

• many names for sequential decision-making under uncertainty

� {feedback, stochastic, optimal, robust} control
� multi-stage stochastic programming (with recourse)
� Markov decision processes, reinforcement learning
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Planning vs. control
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The general MPC algorithm

repeat:

• observe the system

• predict uncertain influences on the system over a receding horizon

• decide a plan of action under those predictions

• act on the plan for a while
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The MPC planning problem at time k

• pick a planning horizon H

• make a prediction ŵ(h|k) of w(k + h) for h = 0, . . . , H − 1

• choose

� (x(0|k), . . . , x(H|k)) ∈ RH+1

� (pc(0|k), . . . , pc(H − 1|k)) ∈ RH

� (pd(0|k), . . . , pd(H − 1|k)) ∈ RH

• to maximize ∆t
∑H−1

h=0 π(k + h)(ŵ(h|k) + pd(h|k)− pc(h|k))

• subject to x(0|k) = x(k) and for h = 0, . . . , H − 1,

� x(h + 1|k) = ax(h|k) + (1− a)τ [ηcpc(h|k)− pd(h|k)/ηd ]
� 0 ≤ x(h + 1|k) ≤ x
� 0 ≤ pc(h|k) ≤ pc
� 0 ≤ pd(h|k) ≤ pd
� |ŵ(h|k) + pd(h|k)− pc(h|k)| ≤ pg

(& possibly a terminal cost or constraint, e.g. x(H|k) ≥ x(k))

• given ∆t, π, ηc , ηd , x0, a, τ , x , pc , pd , pg , ŵ(0|k), . . . , ŵ(H − 1|k)
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A simple prediction algorithm

• at each time k,

� recall the last solar observation, w(k − 1)
� compare it to w clr(k − 1), wpc(k − 1), and w cld(k − 1)
� denote the closest match by w?(k − 1)
� predict ŵ(h|k) = w?(k + h) for h = 0, . . . , H − 1

• in words: predict that the current conditions will persist

• you can imagine much more sophisticated predictors than this
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MPC results
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Balancing performance and robustness
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Notes on MPC

• although it uses optimization, MPC is generally not optimal
(other algorithms can, and sometimes do, perform better)

• but it often performs unreasonably well in practice

• models, forecasts, and state estimates don’t have to be great

• MPC dates back to the 1980s and many fields use it
(chemical processing, robotics, finance, supply chain management, . . . )

• there are many MPC variants
(nonlinear, stochastic, robust, distributed, adaptive, . . . )

• MPC is overkill for many problems
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