Optimization under uncertainty

Purdue ME 597, Distributed Energy Resources

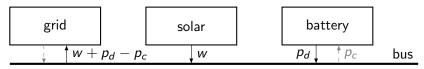
Kevin J. Kircher

Uncertainty in optimization

Optimal planning under uncertainty

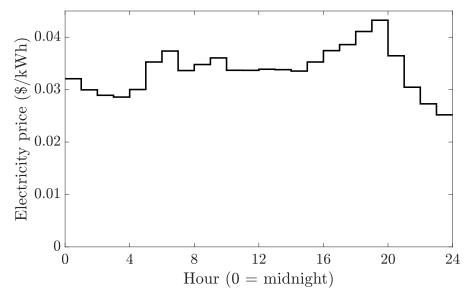
Model predictive control

Example: Energy price arbitrage with grid constraint

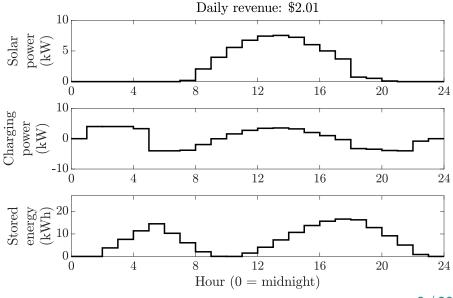


- choose
 - $\begin{array}{l} \diamond \ x = (x(0), \dots, x(K)) \in \mathbf{R}^{K+1} \\ \diamond \ p_c = (p_c(0), \dots, p_c(K-1)) \in \mathbf{R}^K \\ \diamond \ p_d = (p_d(0), \dots, p_d(K-1)) \in \mathbf{R}^K \end{array}$
- to maximize $\Delta t \pi^{\top} (w + p_d p_c)$
- subject to $x(0) = x_0, x(K) \ge x(0)$, and for k = 0, ..., K 1, $\diamond x(k+1) = ax(k) + (1-a)\tau[\eta_c p_c(k) - p_d(k)/\eta_d]$ $\diamond 0 \le x(k+1) \le \overline{x}$ $\diamond 0 \le p_c(k) \le \overline{p}_c$ $\diamond 0 \le p_d(k) \le \overline{p}_d$ $\diamond |w(k) + p_d(k) - p_c(k)| \le \overline{p}_g$
- given Δt , π , η_c , η_d , x_0 , a, τ , \overline{x} , \overline{p}_c , \overline{p}_d , \overline{p}_g , w

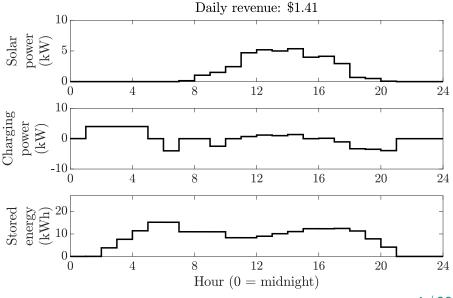
MISO day-ahead electricity price



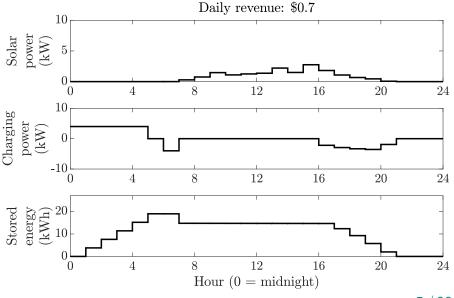
Omniscient optimization for a clear day



Omniscient optimization for a partly cloudy day



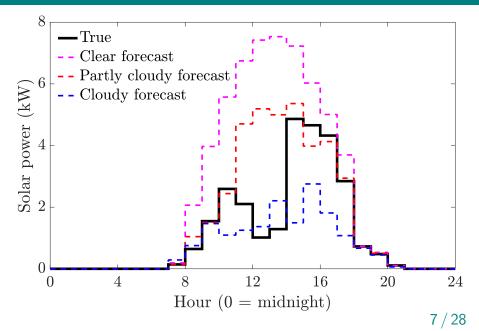
Omniscient optimization for a cloudy day



What if we're not omniscient?

- the omniscient examples above assume
 - $\diamond~$ perfect knowledge of the model structure and parameters
 - $\diamond\,$ perfect measurement of the initial stored energy
 - $\diamond~$ perfect foreknowledge of solar power outputs and energy prices
- in reality, some or all of these assumptions may be bad
- for example, suppose
 - ◊ our solar forecast is imperfect
 - $\diamond\,$ we use the forecast to make a plan and stick to it all day

True and forecasted solar powers



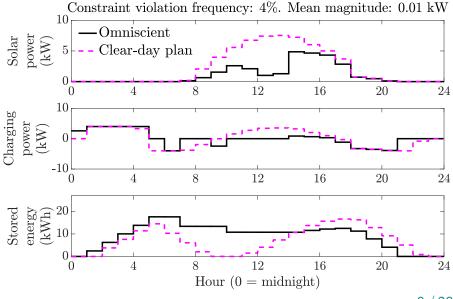
Planning with a forecast \hat{w} of solar power w

choose

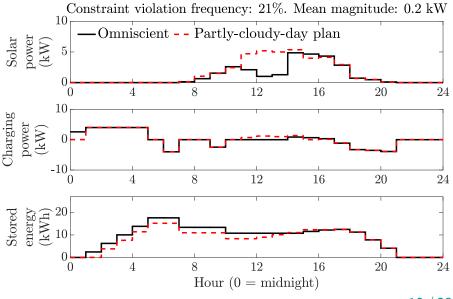
$$\diamond \quad x = (x(0), \dots, x(K)) \in \mathbf{R}^{K+1} \\ \diamond \quad p_c = (p_c(0), \dots, p_c(K-1)) \in \mathbf{R}^K \\ \diamond \quad p_d = (p_d(0), \dots, p_d(K-1)) \in \mathbf{R}^K$$

- to maximize $\Delta t \pi^{\top} (\hat{w} + p_d p_c)$
- subject to $x(0) = x_0$, $x(K) \ge x(0)$, and for $k = 0, \ldots, K 1$, $\diamond x(k+1) = ax(k) + (1-a)\tau[\eta_c p_c(k) - p_d(k)/\eta_d]$ $\diamond 0 \le x(k+1) \le \overline{x}$ $\diamond 0 \le p_c(k) \le \overline{p}_c$ $\diamond 0 \le p_d(k) \le \overline{p}_d$ $\diamond |\hat{w}(k) + p_d(k) - p_c(k)| \le \overline{p}_g$
- given Δt , π , η_c , η_d , x_0 , a, τ , \overline{x} , \overline{p}_c , \overline{p}_d , \overline{p}_g , \hat{w}

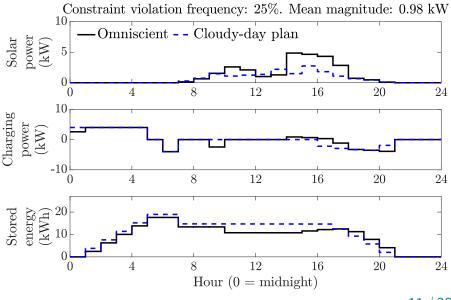
Results from planning on 'clear', $\hat{w} = w^{clr}$



Results from planning on 'partly cloudy', $\hat{w} = w^{pc}$



Results from planning on 'cloudy', $\hat{\mathbf{w}} = \mathbf{w}^{\text{cld}}$



Effects of forecast errors

forecast	violation frequency	conditional average violation magnitude	revenue
perfect	0%	0 kW	\$1.07
'clear'	4%	0.01 kW	\$1.00
'partly cloudy'	21%	0.2 kW	\$1.08
'cloudy'	25%	0.98 kW	\$1.06

how to hedge against risks of forecast errors?

Uncertainty in optimization

Optimal planning under uncertainty

Model predictive control

Risk-neutral planning

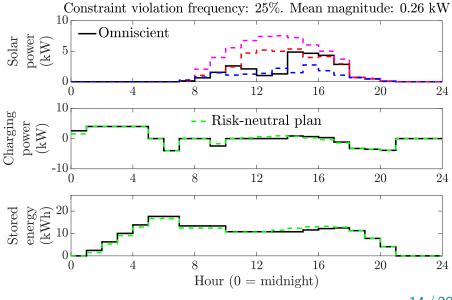
- recall that w only influences optimization through the
 - \diamond objective: maximize $\Delta t \pi^{ op} (w + p_d p_c)$
 - \diamond grid interconnection constraint: $|w(k) + p_d(k) p_c(k)| \leq \overline{p}_g$
- a <u>risk-neutral</u> planning approach
 - \diamond maximizes the expected revenue $\mathbf{E}\left[\Delta t \pi^{ op}(w + p_d p_c)
 ight]$
 - $\diamond~$ replaces the ambiguous constraint

$$|w(k) + p_d(k) - p_c(k)| - \overline{p}_g \leq 0$$

by the expected-value constraint

$$\mathbf{E}\left[|w(k) + p_d(k) - p_c(k)| - \overline{p}_g\right] \le 0$$

Risk-neutral planning with w^{clr} , w^{pc} , w^{cld} , equally likely



Risk-neutral optimization more generally

- consider the (ambiguous) problem with uncertain vector $\boldsymbol{\delta}$
 - ♦ choose $x \in \mathbf{R}^n$
 - \diamond to minimize $f_0(x, \delta)$
 - \diamond subject to $f_1(x,\delta) \leq 0, \ldots, f_m(x,\delta) \leq 0$
 - \diamond given f_0, \ldots, f_m and... something about δ ?!
- a risk-neutral approach models δ as random and solves
 - ♦ choose $x \in \mathbf{R}^n$
 - \diamond to minimize $\mathbf{E}_{\delta} f_0(x, \delta)$
 - \diamond subject to ${f E}_{\delta}\,f_1(x,\delta)\leq {f 0},\,\ldots$, ${f E}_{\delta}\,f_m(x,\delta)\leq {f 0},$
 - \diamond given f_0, \ldots, f_m and the distribution of δ (and the ability to compute the expectation integrals)

(Maximally) risk-averse planning

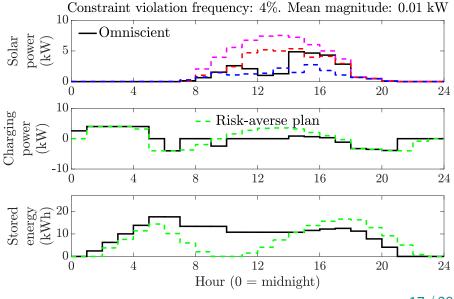
- a (maximally) risk-averse approach
 - maximizes the worst-case revenue $\min_{w} \left[\Delta t \pi^{\top} (w + p_d p_c) \right]$
 - replaces the ambiguous constraint

$$|w(k) + p_d(k) - p_c(k)| - \overline{p}_g \leq 0$$

by the worst-case constraint

$$\max_{w(k)} \left[|w(k) + p_d(k) - p_c(k)| - \overline{p}_g \right] \le 0$$

Risk-averse planning with only w^{clr} , w^{pc} , w^{cld} possible



(Maximally) risk-averse optimization more generally

- consider the (ambiguous) problem with uncertain vector $\boldsymbol{\delta}$
 - ♦ choose $x \in \mathbf{R}^n$
 - \diamond to minimize $f_0(x, \delta)$
 - \diamond subject to $f_1(x,\delta) \leq 0, \ \dots, \ f_m(x,\delta) \leq 0$
 - \diamond given f_0, \ldots, f_m and... something about δ ?!
- a maximally risk-averse approach solves
 - ♦ choose $x \in \mathbf{R}^n$
 - \diamond to minimize max_{δ} f₀(x, δ)
 - \diamond subject to $\max_{\delta} f_1(x,\delta) \leq 0, \ldots, \max_{\delta} f_m(x,\delta) \leq 0$
 - ◇ given f₀, ..., f_m and the support of δ
 (and the ability to compute the maxima over δ)

it sometimes makes sense to mix risk measures; for example:

- risk-neutral objective: maximize $\mathbf{E} \left[\Delta t \pi^{\top} (w + p_d p_c) \right]$
- (maximally) risk-averse constraints:

$$\max_{w(k)} \left[|w(k) + p_d(k) - p_c(k)| - \overline{p}_g \right] \le 0$$

 $\bullet\,$ in solar/battery example, results resemble risk-averse approach

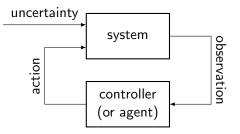
 $\bullet\,$ a risk measure ${\cal R}$ disambiguates ambiguous constraints

 $f(x, \delta) \leq 0$ (ambiguous) $\longrightarrow \mathcal{R}[f(x, \delta)] \leq 0$ (unambiguous)

- the expected value, $\mathcal{R} = \mathbf{E}_{\delta}$, is risk-neutral
- the worst-case value, $\mathcal{R} = \max_{\delta}$, is maximally risk-averse
- other risk measures interpolate between these extremes
 - \diamond value-at-risk
 - ◊ conditional value-at-risk
 - ◊ entropic value-at-risk
 - \diamond others...

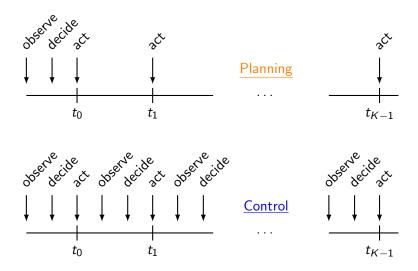
What if we don't have to rigidly stick to our plan?

- often, we can update actions based on new information
- this option is called recourse
- exercising it gives rise to feedback



- many names for sequential decision-making under uncertainty
 - $\diamond \ \{ feedback, \ stochastic, \ optimal, \ robust \} \ control$
 - \diamond multi-stage stochastic programming (with recourse)
 - ◊ Markov decision processes, reinforcement learning

Planning vs. control



Uncertainty in optimization

Optimal planning under uncertainty

Model predictive control

The general MPC algorithm

repeat:

- observe the system
- predict uncertain influences on the system over a receding horizon
- **decide** a plan of action under those predictions
- act on the plan for a while

The MPC planning problem at time k

- pick a planning horizon H
- make a prediction $\hat{w}(h|k)$ of w(k+h) for h = 0, ..., H-1
- choose

$$\begin{array}{l} \diamond \ (x(0|k), \dots, x(H|k)) \in \mathbf{R}^{H+1} \\ \diamond \ (p_c(0|k), \dots, p_c(H-1|k)) \in \mathbf{R}^H \\ \diamond \ (p_d(0|k), \dots, p_d(H-1|k)) \in \mathbf{R}^H \end{array}$$

- to maximize $\Delta t \sum_{h=0}^{H-1} \pi(k+h)(\hat{w}(h|k) + p_d(h|k) p_c(h|k))$
- subject to x(0|k) = x(k) and for $h = 0, \ldots, H 1$,
 - $\diamond x(h+1|k) = ax(h|k) + (1-a)\tau[\eta_c p_c(h|k) p_d(h|k)/\eta_d]$ $\diamond 0 \le x(h+1|k) \le \overline{x}$
 - $0 \le x(n+1|k) \le 1$ $0 < p_c(h|k) < \overline{p}_c$
 - $\circ 0 \leq p_c(n|k) \leq p_c \\ \circ 0 < p_d(h|k) < \overline{p}_d$
 - $\diamond 0 \leq p_d(n|k) \leq p_d \\ \diamond |\hat{w}(h|k) + p_d(h|k) p_c(h|k)| \leq \overline{p}_{\sigma}$

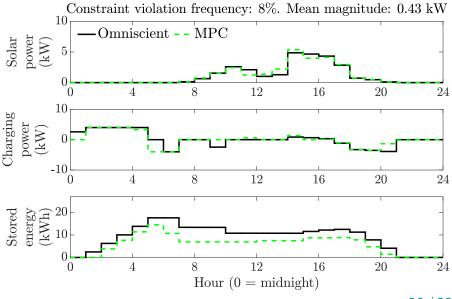
(& possibly a terminal cost or constraint, e.g. $x(H|k) \ge x(k)$)

• given Δt , π , η_c , η_d , x_0 , a, τ , \overline{x} , \overline{p}_c , \overline{p}_d , \overline{p}_g , $\hat{w}(0|k)$, ..., $\hat{w}(H-1|k)$

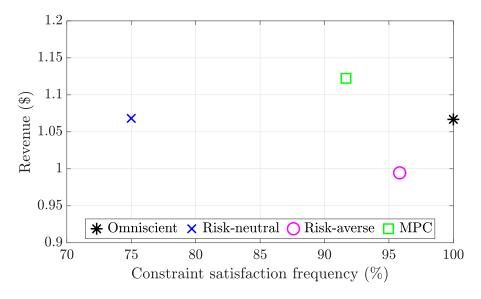
A simple prediction algorithm

- at each time k,
 - \diamond recall the last solar observation, w(k-1)
 - \diamond compare it to $w^{\mathsf{clr}}(k-1)$, $w^{\mathsf{pc}}(k-1)$, and $w^{\mathsf{cld}}(k-1)$
 - \diamond denote the closest match by $w^{\star}(k-1)$
 - \diamond predict $\hat{w}(h|k) = w^{\star}(k+h)$ for $h = 0, \ldots, H-1$
- in words: predict that the current conditions will persist
- you can imagine much more sophisticated predictors than this

MPC results



Balancing performance and robustness



Notes on MPC

- although it uses optimization, **MPC is generally not optimal** (other algorithms can, and sometimes do, perform better)
- but it often performs unreasonably well in practice
- models, forecasts, and state estimates don't have to be great
- MPC dates back to the 1980s and many fields use it (chemical processing, robotics, finance, supply chain management, ...)
- there are many MPC variants (nonlinear, stochastic, robust, distributed, adaptive, ...)
- MPC is overkill for many problems