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Uncertainty in optimization



Example: Energy price arbitrage with grid constraint

grid solar battery
. fw+ps—pc Iw P 'pe bus
e choose

o x = (x(0),...,x(K)) € RK+1
& Pc = (pc(0)7 i -apc(K - 1)) € R
O pd = (pd(O), .. .,pd(K — 1)) € RK
to maximize Atr ! (w + pg — pc)
subject to x(0) = xp, x(K) > x(0), and for k=0, ..., K —1,
o x(k+1) = ax(k) + (1 = a)7[nepe(k) — pa(k)/nd]
o 0<x(k+1)<x
© 0 < pe(k) <P
© 0 < pa(k) <Py
(w(k) + pa(k) — pc(k)| < Pg

given At, T, Nc, Nd, X0, @, T, X, Per P Pgr W

<&
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MISO day-ahead electricity price
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Omniscient optimization for a clear day

Daily revenue: $2.01
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Omniscient optimization for a partly cloudy day

Daily revenue: $1.41
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Omniscient optimization for a cloudy day

Daily revenue: $0.7
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What if we're not omniscient?

e the omniscient examples above assume

o perfect knowledge of the model structure and parameters

o perfect measurement of the initial stored energy

o perfect foreknowledge of solar power outputs and energy prices
e in reality, some or all of these assumptions may be bad
e for example, suppose

< our solar forecast is imperfect
¢ we use the forecast to make a plan and stick to it all day
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True and forecasted solar powers
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Planning with a forecast v of solar power w

e choose
o x = (x(0),...,x(K)) € RK+?
o pe = (pc(0),...,pc(K—1)) € RK
o pg = (pa(0),...,pa(K — 1)) € R¥
to maximize Atr ' (W + pg — pe)
subject to x(0) = xo, x(K) > x(0), and for k =0, ..., K —1,
o x(k+1) = ax(k) + (1 = a)7[nepe(k) — pa(k)/nd]
o 0< x(k+1)<x
o 0< pc(k) <P,
© 0 < pa(k) <Py
o |w(k) + pa(k) = pe(K)| < Py
given At, T, Ne, Nd, X0, @, T, X, Pes Py Pg w
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Results from planning on ‘clear’,

Constraint violation frequency: 4% Mean magnitude: 0.01 kW
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Results from planning on ‘partly cloudy’,

Constraint violation frequency: 21%. Mean magnitude: 0.2 kW
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Charging Solar

Stored

Results from planning on ‘cloudy’,

1Constlraunt violation frequency 25%. Mean magnitude: 0.98 kW
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Effects of forecast errors

violation | conditional average
forecast frequency | violation magnitude | revenue
perfect 0% 0 kW $1.07
‘clear’ 4% 0.01 kW $1.00
‘partly cloudy’ 21% 0.2 kW $1.08
‘cloudy’ 25% 0.98 kW $1.06

how to hedge against risks of forecast errors?
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Optimal planning under uncertainty



Risk-neutral planning

e recall that w only influences optimization through the
o objective: maximize Atm " (w + pg — pc)
o grid interconnection constraint: |w(k) + pa(k) — pc(k)| < Py

e a risk-neutral planning approach

© maximizes the expected revenue E [Atm " (w + pg — pc)]
© replaces the ambiguous constraint

(w(k) + pa(k) — pc(k)| —Pg <0
by the expected-value constraint

E [|w(k) + pu(k) — pe(K)| ~B,] <0
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Risk-neutral planning with wer wPe weld equally likely

1Constlraunt violation frequency 25% Mean magnitude: 0.26 kW
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Risk-neutral optimization more generally

e consider the (ambiguous) problem with uncertain vector &
¢ choose x € R”
© to minimize fo(x, d)
o subject to fi(x,0) <0, ..., fin(x,8) <0
o given fy, ..., f,, and... something about § 7!
e a risk-neutral approach models § as random and solves
¢ choose x € R"”
© to minimize Es fo(x, 6)
o subject to Es f1(x,9) <0, ..., Es fm(x,8) <0,
o given fy, ..., f, and the distribution of §
(and the ability to compute the expectation integrals)
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(Maximally) risk-averse planning

a (maximally) risk-averse approach
e maximizes the worst-case revenue min,, [Atm! (w + pg — pc)]

e replaces the ambiguous constraint
(w(k) + pa(k) — pc(k)| —Pg <0
by the worst-case constraint

max [lw (k) + pa(k) — pc(k)| — Pg] <0
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Risk-averse planning with only welr wPe, peld possible

1OConstralnt violation frequency: 4% Mean magnitude: 0.01 kW
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(Maximally) risk-averse optimization more generally

e consider the (ambiguous) problem with uncertain vector &
¢ choose x € R”
© to minimize fo(x, d)
o subject to fi(x,0) <0, ..., fn(x,8) <0
o given fy, ..., f, and... something about § 7!
e a maximally risk-averse approach solves
¢ choose x € R”
© to minimize maxs fo(x, d)
© subject to maxs f1(x,6) <0, ..., maxs fm(x,d) <0
o given fy, ..., f, and the support of §
(and the ability to compute the maxima over §)
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Planning with mixed risk measures

it sometimes makes sense to mix risk measures; for example:
e risk-neutral objective: maximize E [At7 " (w + py — pc)]

e (maximally) risk-averse constraints:
max|w (k) + pa(k) = pe(k)| = Py] <0

e in solar/battery example, results resemble risk-averse approach
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Other risk measures

e a risk measure R disambiguates ambiguous constraints

f(x,0) <0 (ambiguous) — R[f(x,d)] < 0 (unambiguous)

the expected value, R = Eg, is risk-neutral

the worst-case value, R = maxg, is maximally risk-averse

other risk measures interpolate between these extremes
¢ value-at-risk
© conditional value-at-risk
© entropic value-at-risk
¢ others. ..
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What if we don’t have to rigidly stick to our plan?

e often, we can update actions based on new information
e this option is called recourse

e exercising it gives rise to feedback

uncertainty

—_—

system °
jon
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c
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(or agent)

e many names for sequential decision-making under uncertainty

o {feedback, stochastic, optimal, robust} control
© multi-stage stochastic programming (with recourse)
© Markov decision processes, reinforcement learning
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Planning vs. control
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Model predictive control



The general MPC algorithm

repeat:
e observe the system
e predict uncertain influences on the system over a receding horizon
e decide a plan of action under those predictions

e act on the plan for a while
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The MPC planning problem at time k

e pick a planning horizon H
e make a prediction w(h/k) of w(k + h) for h=0, ..., H-1
e choose

o (x(0lk),...,x(H|k)) € RH*L

© (pc(0|k)7" 'apc(H - 1|k)) € R"

o (pa(0[k), - -, pa(H —1|k))€RH

o to maximize At S/ w(k + h)(W(h k) + pa(hlk) — pe(hlk))
e subject to x(0|k) = x(k) and for h=0, ..., H—1,

o x(h+1[k) = ax(h|k) + (1 — a)7[nepe(hlk) — pa(h|k)/1d]
0< x(h+1k) <x
0 < pc(hlk) <P,
0 < pa(hlk) < Py
W (h1k) + pa(hlk) = pe(hlk)| < Py
(& possibly a terminal cost or constraint, e.g. x(H|k) > x(k))

e given At, T, N, Nd, X0, a, T, X, Per P> Pg: w(0lk), ..., w(H —1|k)
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A simple prediction algorithm

e at each time k,

o recall the last solar observation, w(k — 1)

o compare it to w"(k — 1), wP(k — 1), and w(k — 1)
© denote the closest match by w*(k — 1)

predict w(h|k) = w*(k+ h) for h=0, ..., H-1

e in words: predict that the current conditions will persist

<&

e you can imagine much more sophisticated predictors than this
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MPC results

Constraint violation frequency: 8%. Mean magnitude: 0.43 kW
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Balancing performance and robustness
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Notes on MPC

e although it uses optimization, MPC is generally not optimal
(other algorithms can, and sometimes do, perform better)

e but it often performs unreasonably well in practice
e models, forecasts, and state estimates don't have to be great

e MPC dates back to the 1980s and many fields use it
(chemical processing, robotics, finance, supply chain management, ...)

e there are many MPC variants
(nonlinear, stochastic, robust, distributed, adaptive, ...)

e MPC is overkill for many problems
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