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What is machine learning?

• extracting information from data, usually to make predictions

• includes two general tasks:

1. build a model from data
2. validate the model (assess performance on unseen data)

• a supervised learning model predicts targets given features
� regression predicts real-valued targets
� classification predicts targets from finite sets such as {−1, 1}

• unsupervised learning creates a model of the data
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Training and validation

• our true goal is to predict unseen data

• good practice: divide the full dataset into

1. training data for choosing model parameters
2. validation data for evaluating candidate models

• overfit models

� perform well on training data, but not on validation data
� likely won’t generalize well to unseen data
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Embeddings

• denote raw input, output data by u(i) ∈ U , v (i) ∈ V
� U is the set of possible input data
� V is the set of possible output data

• we often transform each

� raw input u(i) into a feature x (i) = φ(u(i)) ∈ Rnx

� raw output v (i) into a target y (i) = ψ(v (i)) ∈ Rny

• φ : U → Rnx and ψ : V → Rny are called embeddings

• we’ll assume ny = 1 from now on, but methods extend to vector y (i)
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Faithful embeddings satisfy φ(u) ≈ φ(ũ) ⇐⇒ u ≈ ũ

example: suppose U = {0, . . . , 23} contains hour-of-day data

• problem: midnight ≈ 11 PM, but 0 6≈ 23

• idea: choose φ(u) = sin(2πu24 ), so φ(0) ≈ φ(23)

• new problem: midnight 6≈ noon, but sin(0) = sin(π)

• faithful embedding: φ(u) =
(
sin(2πu24 ), cos(2πu24 )

)
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Standardization and normalization

• model training tends to work better when feature scales are similar

• standardization and normalization are two ways to rescale data

• standardization embedding, x
(i)
j = (u

(i)
j − µj)/σj with

µj =
1

n

n∑
i=1

u
(i)
j , σj =

√√√√1

n

n∑
i=1

(u
(i)
j − µj)2,

makes 1
n

∑n
i=1 x

(i)
j = 0,

√
1
n

∑n
i=1(x

(i)
j )2 = 1

• normalization embedding, x
(i)
j = (u

(i)
j − uj)/(uj − uj) with

uj = min
{
u
(1)
j , . . . , u

(n)
j

}
, uj = max

{
u
(1)
j , . . . , u

(n)
j

}
,

makes each x
(i)
j lie between zero and one
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Models

• a model is a function fθ : Rnx → R

• notation fθ emphasizes dependence on parameters θ ∈ Rnθ

• a good model predicts fθ(x) ≈ y for unseen (x , y) data

• many possible model structures:

� linear models
� nearest neighbors
� neural networks
� regression trees
� support vector machines
� . . .
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Linear models

• linear models have the form fθ(x) = θ>x (so nθ = nx)

• usually, we embed with a constant feature x1 = 1, so

fθ(x) = θ1 + θ2x2 + · · ·+ θnx xnx

• in training, we choose θ such that each fθ(x (i)) ≈ y (i):θ
>x (1)

...

θ>x (n)

 =

(x (1))>θ
...

(x (n))>θ

 =

(x (1))>

...

(x (n))>

 θ ≈
y

(1)

...

y (n)


• can write this as Xθ ≈ Y , where

X =

(x (1))>

...

(x (n))>

 =

x
(1)
1 . . . x

(1)
nx

...
...

x
(n)
1 . . . x

(n)
nx

 , Y =

y
(1)

...

y (n)


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Loss functions

• a loss function `i : Rnθ → R quantifies how badly fθ(x (i)) misses y (i)

• square loss: `i (θ) = (fθ(x (i))− y (i))2

• absolute loss: `i (θ) =
∣∣fθ(x (i))− y (i)

∣∣

y (i)
fθ(x (i))
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Mean loss

• the mean loss L : Rnθ → R is

L(θ) =
1

n

n∑
i=1

`i (θ)

• with square loss, L is the mean square error (MSE):

L(θ) =
1

n

n∑
i=1

(fθ(x (i))− y (i))2

• with absolute loss, L is the mean absolute error (MAE):

L(θ) =
1

n

n∑
i=1

∣∣∣fθ(x (i))− y (i)
∣∣∣
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Regularization

• a model fθ is insensitive if fθ(x) ≈ fθ(x̃) when x ≈ x̃

• insensitive models tend to generalize better

• a regularizer r : Rnθ → R quantifies the sensitivity of fθ

• for linear model fθ(x) = θ>x ,

∂fθ(x)

∂xj
=

∂

∂xj
(θ1x1 + · · ·+ θjxj + · · ·+ θnx xnx ) = θj

=⇒ fθ should be less sensitive if θ is smaller

• two common regularizers:

� ridge or `2: r(θ) = ‖θ‖22 = θ21 + · · ·+ θ2nθ
� lasso or `1: r(θ) = ‖θ‖1 = |θ1|+ · · ·+ |θnθ |

• with constant feature x1 = 1, typically omit θ1 from regularization
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Lasso regularization promotes sparsity

• a vector is sparse if it has few nonzero elements

• if θj = 0 in linear model fθ(x) = θ1x1 + · · ·+ θnx xnx , then

� feature xj has no influence on predictions
� might as well omit xj and simplify model training, evaluation

• lasso regularizer |θ1|+ · · ·+ |θnx | promotes sparsity of θ

0
θj

|θj | (lasso)

θ2j (ridge)
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Training models via regularized mean loss minimization

• choosing θ is called training the model

• two competing goals:

1. fit training data well by making L(θ) small
2. generalize well by making r(θ) small

• to balance them, choose θ to minimize L(θ) + λr(θ)

• regularization hyperparameter λ ≥ 0 governs tradeoff: 1 vs. 2
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Training linear models, fθ(x) = θ>x

• with linear model, square loss, and `2 regularization,

L(θ) + λr(θ) = (Xθ − Y )>(Xθ − Y )/n + λθ>θ

= (θ>X>Xθ − 2Y>Xθ + Y>Y )/n + λθ>Iθ

= [θ>(X>X + nλI )θ − 2Y>Xθ − Y>Y ]/n

• since L(θ) + λr(θ) = θ>Pθ + q>θ + r , gradient is 2Pθ + q

2Pθ? + q = 0 ⇐⇒ θ? = (X>X + nλI )−1X>Y

• inverse always exists if λ > 0

• if λ = 0 (no regularization), X needs linearly independent columns

• to omit θ1 regularization, replace Inx by E>E , where

E =
[
0 Inx−1

]
∈ Rnx−1×nx

• no formula for absolute loss or `1 regularization, but convex problems
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Validation

• true goal: choose embeddings φ, ψ and model fθ such that

ψ−1(fθ(φ(u))) ≈ v

for unseen (u, v) data

• we can’t test this until unseen data are revealed

• instead, validation

� holds back some data from training
� evaluates performance on held-back data
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Out-of-sample validation

• split data into training and validation (say, 70/30, 80/20, or 90/10)

• choose starter embeddings, model structure, hyperparameters

• repeat:

� change embeddings, model structure, or hyperparameters
� train model in training data
� if performance degrades in validation data, revert change

until performance in validation data is acceptable
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K -folds validation

• divide data into K folds

• for k = 1, . . . , K

� train on all data except fold k
� compute mean loss on fold k , Lk(θ)

• evaluate performance using mean (over all folds) of mean losses,

L̄(θ) =
1

K

K∑
i=1

Lk(θ)
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Summary: How to build regression models

• choose a loss function to rate how badly predictions miss targets

• choose a regularizer to rate model sensitivity

• split data into training and validation

• repeat:

� choose how to embed raw data into features and targets
(feature engineering)

� choose a model structure and hyperparameters
(model selection and hyperparameter tuning)

� choose model parameters to minimize regularized mean training loss
(training)

until validation performance is acceptable

• retrain model on all (training + validation) data
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Problem

• goal: approximate an unknown function g : [−1, 1]→ R

• n = 50 noisy raw data points:

� inputs u(1), . . . , u(50) are evenly spaced on [−1, 1]
� outputs v (i) are noisy observations of g(u(i))

• want to predict unseen data between the 50 points

18 / 33



Solution approach

• linear model, square loss

• high-order polynomial feature embeddings with normalization

• standardization target embedding

• K -folds validation with K = 10

• two stages of regularization with hyperparameter tuning:

� lasso to select important features
� ridge to reduce model sensitivity to selected features
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Embeddings

• start with 25th degree polynomial feature embedding:

z(i) =


1

u(i)

...

(u(i))25


• normalize the z

(i)
2 , . . . , z

(i)
26 :

x (i) =


1

(z
(i)
2 − z2)/(z2 − z2)

...

(z
(i)
j − z26)/(z26 − z26)


• standardize targets: y (i) = (v (i) − µ)/σ
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Unregularized model overfits training data

mean losses in fold 1: 0.188 training, 4,577 validation
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Lasso-regularized models
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Lasso-regularized models
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Lasso-regularized models
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Lasso-regularized models
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Feature selection via lasso regularization
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Ridge-regularized models with selected features
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Ridge-regularized models with selected features
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Ridge-regularized models with selected features
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Ridge-regularized models with selected features
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Ridge-regularized models with selected features
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Ridge-regularized models with selected features
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Hyperparameter tuning via ridge regularization
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Final model
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Summary

• ‘linear models’ are linear in θ and x , can be highly nonlinear in u

• general approach works for many problems

1. embed raw inputs into a large number of candidate features
2. select features via lasso regularization and K -folds validation
3. ‘polish’ model with selected features and ridge regularization

• step 3 is fast (exact formula for square loss and ridge regularization)

• step 2 is slower (lasso regularization requires numerical optimization)

• approach also works for nonlinear models, but usually much slower
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Problem

• estimate thermal resistance R in 1R1C building model,

C
dT (t)

dt
=

Tout(t)− T (t)

R
+ q(t) + w(t)

• available measurements (5-minute time step, 6-week duration):

� indoor temperature T (t)
� outdoor temperature Tout(t)
� heater thermal power q(t)
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Prior information

• time-average of 1R1C model with T (0) ≈ T (τ):

C

τ

∫ τ

0

dT (t)

dt
dt =

1

τ

∫ τ

0

[
Tout(t)− T (t)

R
+ q(t) + w(t)

]
dt

C (T (τ)− T (0))

τ
=

T̄out − T̄

R
+ q̄ + w̄

=⇒ q̄ ≈ T̄ − T̄out

R
− w̄

where q̄ = 1
τ

∫ τ
0 q(t)dt and so on for T̄ , T̄out, w̄

• suggests linear model y ≈ θ1x1 + θ2x2 with

� target y = q̄
� features x1 = 1, x2 = T̄ − T̄out

� parameters θ1 = −w̄ , θ2 = 1/R

• to avoid solar effects, embed raw data into nightly averages
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Solution approach

• linear model, square loss

• ridge regularization (including on constant feature)

• K -folds validation with K = 100

• only 2 features, so no need for a feature selection step
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Hyperparameter tuning
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Histograms of parameter estimates at λ?
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Final model, retrained on all (training + validation) data
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