Regression

Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

Regression overview

Example: Polynomial interpolation

Example: Thermal resistance from thermostat data

- extracting information from data, usually to make predictions
- includes two general tasks:
 - 1. build a model from data
 - 2. validate the model (assess performance on unseen data)
- a supervised learning model predicts targets given features
 - ◊ regression predicts real-valued targets
 - $\diamond~$ classification predicts targets from finite sets such as $\{-1,1\}$
- unsupervised learning creates a model of the data

Training and validation

- our true goal is to predict unseen data
- good practice: divide the full dataset into
 - 1. training data for choosing model parameters
 - 2. validation data for evaluating candidate models
- overfit models
 - o perform well on training data, but not on validation data
 - $\diamond~$ likely won't generalize well to unseen data

Embeddings

- denote raw input, output data by $u^{(i)} \in \mathcal{U}$, $v^{(i)} \in \mathcal{V}$
 - $\diamond~\mathcal{U}$ is the set of possible input data
 - $\diamond~\mathcal{V}$ is the set of possible output data
- we often transform each
 - ♦ raw input $u^{(i)}$ into a feature $x^{(i)} = \phi(u^{(i)}) \in \mathbf{R}^{n_x}$
 - \diamond raw output $v^{(i)}$ into a target $y^{(i)} = \psi(v^{(i)}) \in \mathbf{R}^{n_y}$
- $\phi: \mathcal{U} \to \mathbf{R}^{n_{x}}$ and $\psi: \mathcal{V} \to \mathbf{R}^{n_{y}}$ are called **embeddings**
- we'll assume $n_y = 1$ from now on, but methods extend to vector $y^{(i)}$

Faithful embeddings satisfy $\phi(u) \approx \phi(\tilde{u}) \iff u \approx \tilde{u}$

example: suppose $\mathcal{U} = \{0, \dots, 23\}$ contains hour-of-day data

- problem: midnight ≈ 11 PM, but 0 $\not\approx 23$
- idea: choose $\phi(u) = \sin(\frac{2\pi u}{24})$, so $\phi(0) \approx \phi(23)$
- new problem: midnight $\not\approx$ noon, but $\sin(0) = \sin(\pi)$
- faithful embedding: $\phi(u) = \left(\sin(\frac{2\pi u}{24}), \cos(\frac{2\pi u}{24})\right)$

Standardization and normalization

- model training tends to work better when feature scales are similar
- standardization and normalization are two ways to rescale data
- standardization embedding, $x_j^{(i)} = (u_j^{(i)} \mu_j)/\sigma_j$ with

$$\mu_j = \frac{1}{n} \sum_{i=1}^n u_j^{(i)}, \ \sigma_j = \sqrt{\frac{1}{n} \sum_{i=1}^n (u_j^{(i)} - \mu_j)^2},$$

makes $\frac{1}{n} \sum_{i=1}^{n} x_j^{(i)} = 0$, $\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_j^{(i)})^2} = 1$

• normalization embedding, $x_j^{(i)} = (u_j^{(i)} - \underline{u}_j)/(\overline{u}_j - \underline{u}_j)$ with

$$\underline{u}_j = \min\left\{u_j^{(1)}, \ldots, u_j^{(n)}\right\}, \ \overline{u}_j = \max\left\{u_j^{(1)}, \ldots, u_j^{(n)}\right\},$$

makes each $x_j^{(i)}$ lie between zero and one

Models

- a model is a function $f_{\theta}: \mathbf{R}^{n_{x}} \to \mathbf{R}$
- notation $f_{ heta}$ emphasizes dependence on parameters $heta \in \mathbf{R}^{n_{ heta}}$
- a good model predicts $f_{\theta}(x) \approx y$ for unseen (x, y) data
- many possible model structures:
 - \diamond linear models
 - ◊ nearest neighbors
 - ◊ neural networks
 - $\diamond~$ regression trees
 - ◊ support vector machines
 - ٥ . . .

Linear models

- linear models have the form $f_{\theta}(x) = \theta^{\top} x$ (so $n_{\theta} = n_x$)
- usually, we embed with a constant feature $x_1 = 1$, so

$$f_{ heta}(x) = heta_1 + heta_2 x_2 + \dots + heta_{n_x} x_{n_x}$$

• in training, we choose θ such that each $f_{\theta}(x^{(i)}) \approx y^{(i)}$:

$$\begin{bmatrix} \theta^{\top} x^{(1)} \\ \vdots \\ \theta^{\top} x^{(n)} \end{bmatrix} = \begin{bmatrix} (x^{(1)})^{\top} \theta \\ \vdots \\ (x^{(n)})^{\top} \theta \end{bmatrix} = \begin{bmatrix} (x^{(1)})^{\top} \\ \vdots \\ (x^{(n)})^{\top} \end{bmatrix} \theta \approx \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

• can write this as $X\theta \approx Y$, where

$$X = \begin{bmatrix} (x^{(1)})^{\top} \\ \vdots \\ (x^{(n)})^{\top} \end{bmatrix} = \begin{bmatrix} x_1^{(1)} & \dots & x_{n_x}^{(1)} \\ \vdots & & \vdots \\ x_1^{(n)} & \dots & x_{n_x}^{(n)} \end{bmatrix}, \quad Y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

Loss functions

- a loss function $\ell_i : \mathbf{R}^{n_{\theta}} \to \mathbf{R}$ quantifies how badly $f_{\theta}(x^{(i)})$ misses $y^{(i)}$
- square loss: $\ell_i(\theta) = (f_{\theta}(x^{(i)}) y^{(i)})^2$
- absolute loss: $\ell_i(\theta) = \left| f_{\theta}(x^{(i)}) y^{(i)} \right|$

Mean loss

• the mean loss $\mathcal{L}: \mathbf{R}^{n_{\theta}} \to \mathbf{R}$ is

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell_i(\theta)$$

• with square loss, \mathcal{L} is the mean square error (MSE):

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

• with absolute loss, \mathcal{L} is the mean absolute error (MAE):

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left| f_{\theta}(x^{(i)}) - y^{(i)} \right|$$

Regularization

- a model f_{θ} is **insensitive** if $f_{\theta}(x) \approx f_{\theta}(\tilde{x})$ when $x \approx \tilde{x}$
- insensitive models tend to generalize better
- a regularizer $r: \mathbf{R}^{n_{\theta}} \to \mathbf{R}$ quantifies the sensitivity of f_{θ}
- for linear model $f_{\theta}(x) = \theta^{\top} x$,

$$\frac{\partial f_{\theta}(x)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\theta_1 x_1 + \dots + \theta_j x_j + \dots + \theta_{n_x} x_{n_x} \right) = \theta_j$$

 \implies $f_{ heta}$ should be less sensitive if heta is smaller

• two common regularizers:

$$\Rightarrow \text{ ridge or } \ell_2: r(\theta) = \|\theta\|_2^2 = \theta_1^2 + \dots + \theta_{n_\theta}^2$$

- ◇ **lasso** or ℓ_1 : $r(\theta) = \|\theta\|_1 = |\theta_1| + \cdots + |\theta_{n_\theta}|$
- with constant feature $x_1 = 1$, typically omit θ_1 from regularization

Lasso regularization promotes sparsity

- a vector is **sparse** if it has few nonzero elements
- if $\theta_j = 0$ in linear model $f_{\theta}(x) = \theta_1 x_1 + \dots + \theta_{n_x} x_{n_x}$, then
 - \diamond feature x_j has no influence on predictions
 - \diamond might as well omit x_j and simplify model training, evaluation
- lasso regularizer $| heta_1|+\dots+| heta_{n_{\! X}}|$ promotes sparsity of heta

- choosing $\boldsymbol{\theta}$ is called $\mathbf{training}$ the model
- two competing goals:
 - 1. fit training data well by making $\mathcal{L}(\theta)$ small
 - 2. generalize well by making $r(\theta)$ small
- to balance them, choose θ to minimize $\mathcal{L}(\theta) + \lambda r(\theta)$
- regularization hyperparameter $\lambda \ge 0$ governs tradeoff: 1 vs. 2

Training linear models, $f_{\theta}(x) = \theta^{\top} x$

 \bullet with linear model, square loss, and ℓ_2 regularization,

$$\begin{aligned} \mathcal{L}(\theta) + \lambda r(\theta) &= (X\theta - Y)^{\top} (X\theta - Y)/n + \lambda \theta^{\top} \theta \\ &= (\theta^{\top} X^{\top} X \theta - 2Y^{\top} X \theta + Y^{\top} Y)/n + \lambda \theta^{\top} I \theta \\ &= [\theta^{\top} (X^{\top} X + n\lambda I) \theta - 2Y^{\top} X \theta - Y^{\top} Y]/n \end{aligned}$$

• since
$$\mathcal{L}(\theta) + \lambda r(\theta) = \theta^\top P \theta + q^\top \theta + r$$
, gradient is $2P \theta + q$

$$2P\theta^{\star} + q = 0 \iff \theta^{\star} = (X^{\top}X + n\lambda I)^{-1}X^{\top}Y$$

- inverse always exists if $\lambda>0$
- if $\lambda = 0$ (no regularization), X needs linearly independent columns
- to omit θ_1 regularization, replace I_{n_x} by $E^{\top}E$, where

$$E = \begin{bmatrix} 0 & I_{n_x-1} \end{bmatrix} \in \mathbf{R}^{n_x-1 \times n_x}$$

• no formula for absolute loss or ℓ_1 regularization, but convex problems

Validation

 \bullet true goal: choose embeddings $\phi,\,\psi$ and model ${\it f}_{\theta}$ such that

$$\psi^{-1}(f_{\theta}(\phi(u))) \approx v$$

for unseen (u, v) data

- we can't test this until unseen data are revealed
- instead, validation
 - $\diamond~$ holds back some data from training
 - $\diamond~$ evaluates performance on held-back data

Out-of-sample validation

- split data into training and validation (say, 70/30, 80/20, or 90/10)
- choose starter embeddings, model structure, hyperparameters
- repeat:
 - $\diamond~$ change embeddings, model structure, or hyperparameters
 - $\diamond\,$ train model in training data
 - $\diamond\,$ if performance degrades in validation data, revert change

until performance in validation data is acceptable

K-folds validation

- divide data into K folds
- for $k = 1, \ldots, K$
 - $\diamond\,$ train on all data except fold k
 - \diamond compute mean loss on fold k, $\mathcal{L}_k(\theta)$
- evaluate performance using mean (over all folds) of mean losses,

$$ar{\mathcal{L}}(heta) = rac{1}{K}\sum_{i=1}^{K}\mathcal{L}_k(heta)$$

Summary: How to build regression models

- choose a loss function to rate how badly predictions miss targets
- choose a regularizer to rate model sensitivity
- split data into training and validation
- repeat:
 - choose how to embed raw data into features and targets (feature engineering)
 - choose a model structure and hyperparameters (model selection and hyperparameter tuning)
 - choose model parameters to minimize regularized mean training loss (training)

until validation performance is acceptable

• retrain model on all (training + validation) data

Regression overview

Example: Polynomial interpolation

Example: Thermal resistance from thermostat data

Problem

- goal: approximate an unknown function $g: [-1,1]
 ightarrow {f R}$
- n = 50 noisy raw data points:
 - \diamond inputs $u^{(1)}, \ldots, u^{(50)}$ are evenly spaced on [-1, 1]
 - \diamond outputs $v^{(i)}$ are noisy observations of $g(u^{(i)})$
- want to predict unseen data between the 50 points

Solution approach

- linear model, square loss
- high-order polynomial feature embeddings with normalization
- standardization target embedding
- K-folds validation with K = 10
- two stages of regularization with hyperparameter tuning:
 - ◊ lasso to select important features
 - $\diamond~$ ridge to reduce model sensitivity to selected features

Embeddings

• start with 25th degree polynomial feature embedding:

$$z^{(i)} = \begin{bmatrix} 1 \\ u^{(i)} \\ \vdots \\ (u^{(i)})^{25} \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} 1 \\ (z_2^{(i)} - \underline{z}_2)/(\overline{z}_2 - \underline{z}_2) \\ \vdots \\ (z_j^{(i)} - \underline{z}_{26})/(\overline{z}_{26} - \underline{z}_{26}) \end{bmatrix}$$

• standardize targets: $y^{(i)} = (v^{(i)} - \mu)/\sigma$

Unregularized model overfits training data

mean losses in fold 1: 0.188 training, 4,577 validation

Feature selection via lasso regularization

Hyperparameter tuning via ridge regularization

Final model

Summary

- 'linear models' are linear in θ and x, can be highly nonlinear in u
- general approach works for many problems
 - 1. embed raw inputs into a large number of candidate features
 - 2. select features via lasso regularization and K-folds validation
 - 3. 'polish' model with selected features and ridge regularization
- step 3 is fast (exact formula for square loss and ridge regularization)
- step 2 is slower (lasso regularization requires numerical optimization)
- approach also works for nonlinear models, but usually much slower

Regression overview

Example: Polynomial interpolation

Example: Thermal resistance from thermostat data

Problem

• estimate thermal resistance R in 1R1C building model,

$$C\frac{\mathsf{d}T(t)}{\mathsf{d}t} = \frac{T_{\mathsf{out}}(t) - T(t)}{R} + q(t) + w(t)$$

- available measurements (5-minute time step, 6-week duration):
 - \diamond indoor temperature T(t)
 - \diamond outdoor temperature $T_{out}(t)$
 - \diamond heater thermal power q(t)

Prior information

• time-average of 1R1C model with $T(0) \approx T(\tau)$:

$$\frac{C}{\tau} \int_0^\tau \frac{\mathrm{d}T(t)}{\mathrm{d}t} \mathrm{d}t = \frac{1}{\tau} \int_0^\tau \left[\frac{T_{\mathrm{out}}(t) - T(t)}{R} + q(t) + w(t) \right] \mathrm{d}t$$
$$\frac{C(T(\tau) - T(0))}{\tau} = \frac{\bar{T}_{\mathrm{out}} - \bar{T}}{R} + \bar{q} + \bar{w}$$
$$\implies \bar{q} \approx \frac{\bar{T} - \bar{T}_{\mathrm{out}}}{R} - \bar{w}$$

where $ar{q}=rac{1}{ au}\int_{0}^{ au}q(t)\mathrm{d}t$ and so on for $ar{\mathcal{T}}$, $ar{\mathcal{T}}_{\mathsf{out}}$, $ar{w}$

- suggests linear model $y \approx \theta_1 x_1 + \theta_2 x_2$ with
 - \diamond target $y = \bar{q}$
 - \diamond features $x_1 = 1$, $x_2 = \bar{T} \bar{T}_{\sf out}$
 - $\diamond~$ parameters $heta_1=-ar{w}$, $heta_2=1/R$
- to avoid solar effects, embed raw data into nightly averages

Solution approach

- linear model, square loss
- ridge regularization (including on constant feature)
- K-folds validation with K = 100
- only 2 features, so no need for a feature selection step

Hyperparameter tuning

Final model, retrained on all (training + validation) data

