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Regression overview



What is machine learning?

extracting information from data, usually to make predictions

includes two general tasks:

1. build a model from data
2. validate the model (assess performance on unseen data)

e a supervised learning model predicts targets given features

o regression predicts real-valued targets
o classification predicts targets from finite sets such as {—1,1}

e unsupervised learning creates a model of the data
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Training and validation

e our true goal is to predict unseen data
e good practice: divide the full dataset into

1. training data for choosing model parameters
2. validation data for evaluating candidate models

e overfit models

o perform well on training data, but not on validation data
o likely won't generalize well to unseen data
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Embeddings

denote raw input, output data by uD ey, vid ey

[ ]
o U is the set of possible input data
oV is the set of possible output data
e we often transform each
o raw input u) into a feature x() = ¢(u)) € R™
o raw output v() into a target y() = ¢(v()) € R™
e o:U — R"™and ¢y : V — R"™ are called embeddings
e we'll assume n, = 1 from now on, but methods extend to vector y(/)
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Faithful embeddings satisfy ¢(u) ~ ¢(i) < u~ i

example: suppose U = {0,...,23} contains hour-of-day data
e problem: midnight =~ 11 PM, but 0 % 23

idea: choose ¢(u )—5|n(27”’) so ¢(0) =~ ¢(23)

new problem: midnight % noon, but sin(0) = sin()

faithful embedding: ¢(u) = (sin(Z&2), cos(ZL))

1 0
29 23 1 9
21 3
20 4
o 19 5
018 6
wn
S 17 7
16 8
15 9
-1 14 13 12 11 10
-1 0 1
sm(22”f)

4/33



Standardization and normalization

e model training tends to work better when feature scales are similar
e standardization and normalization are two ways to rescale data

e standardization embedding, x () =( J(i) — jtj)/oj with

n

1 & (i) 1
1
I’Lj:;i_luj , 0= E;l )2,

makes £ 37, 67 =0, /25 (x7)2 =1

e normalization embedding, x () =( J(i) — u;)/(dj — u;) with

u; = min {u}l),...,u(”)}, uj = max{u(l),...,u}")},

N
makes each xj() lie between zero and one
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a model is a function fp : R™ — R

notation fy emphasizes dependence on parameters 6 € R

a good model predicts fy(x) = y for unseen (x, y) data

many possible model structures:

linear models

nearest neighbors

neural networks
regression trees

support vector machines

S OO0 O
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Linear models

e linear models have the form fy(x) = 67 x (so ng = ny)
e usually, we embed with a constant feature x; = 1, so

fo(x) = 01+ Orxo + - - - + O xn,

e in training, we choose 6 such that each fy(x()) ~ y():

a7 x(1) (X(l))Tg (X(l))T y)
= =] |em |
9T x(n) (X(n))Tg (X(n))T y(m
e can write this as X0 =~ Y, where
(xH T xfl) . x,(,i) y(®
X=| + |=]: Y=
(X(n))T X1(n) o X,(7n) y(n
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Loss functions

e a loss function £; : R — R quantifies how badly f3(x()) misses (/)
e square loss: £;(0) = (fy(x()) — y()2
e absolute loss: /(1)) = |f)(x) — y1]

fH(X("))
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Mean loss

e the mean loss £ : R — R is

n

£0) =3 > 6(0)

i=1
e with square loss, £ is the mean square error (MSE):

1« , ,
— = £(xNy — (D)2
£0) = 3 =)
e with absolute loss, £ is the mean absolute error (MAE):

£0)= 13 [f(x) ~ ¥

i=1
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Regularization

e a model fy is insensitive if fy(x) ~ fy(X) when x ~ X
e insensitive models tend to generalize better
e a regularizer r : R" — R quantifies the sensitivity of fy
e for linear model fy(x) = 6 x,
Ofy(x) 0

T = g O 0 O ) =

— fy should be less sensitive if 8 is smaller

e two common regularizers:
o ridge or £y: r(6) = ||0]]5 =62+ - + 62,
o lasso or f1: r(0) = ||0]|; = [61] + - - + [On,]
e with constant feature x; = 1, typically omit #; from regularization
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Lasso regularization promotes sparsity

e a vector is sparse if it has few nonzero elements
e if §; = 0 in linear model fy(x) = O1x1 + - - - + O, Xn,, then
o feature x; has no influence on predictions
¢ might as well omit x; and simplify model training, evaluation

e lasso regularizer |01| + - -+ + |0, | promotes sparsity of ¢

2 -
07 (ridge)

6] (lasso)
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Training models via regularized mean loss minimization

choosing 6 is called training the model
two competing goals:

1. fit training data well by making £(6) small
2. generalize well by making r(6) small

to balance them, choose 6 to minimize £(0) + Ar(6)

e regularization hyperparameter )\ > 0 governs tradeoff: 1 vs. 2
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Training linear models, fy(x) = 0'x

with linear model, square loss, and /> regularization,
LO)+Mr(0) = (X0 -Y) (X0 —Y)/n+ X076
=(0"XTX0—2YTX0+YTY)/n+ 20710
=[0T(XTX+n\0—2Y"X0 - YTY]/n
since £(0) +Ar(0) =0T PO+ q' 0+ r, gradient is 2P0 + g
2P0 4+ q=0 < 0" = (X' X+n\) XY

inverse always exists if A > 0
if A =0 (no regularization), X needs linearly independent columns
to omit ; regularization, replace /,, by ETE, where

E=[0 Ip_1] € R>1X™

no formula for absolute loss or ¢; regularization, but convex problems
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e true goal: choose embeddings ¢, ¥ and model fy such that

T (fy(e(u)) = v

for unseen (u, v) data

e we can't test this until unseen data are revealed
e instead, validation

¢ holds back some data from training
¢ evaluates performance on held-back data

14 /33



Out-of-sample validation

e split data into training and validation (say, 70/30, 80/20, or 90/10)
e choose starter embeddings, model structure, hyperparameters
e repeat:

© change embeddings, model structure, or hyperparameters
© train model in training data
o if performance degrades in validation data, revert change

until performance in validation data is acceptable
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K-folds validation

e divide data into K folds
e fork=1,..., K

o train on all data except fold k
o compute mean loss on fold k, £(6)

e evaluate performance using mean (over all folds) of mean losses,

_ 1 K
L(0) = e > Li(6)
i—1
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Summary: How to build regression models

e choose a loss function to rate how badly predictions miss targets
e choose a regularizer to rate model sensitivity
e split data into training and validation

e repeat:

© choose how to embed raw data into features and targets
(feature engineering)
© choose a model structure and hyperparameters
(model selection and hyperparameter tuning)
¢ choose model parameters to minimize regularized mean training loss
(training)
until validation performance is acceptable

e retrain model on all (training + validation) data
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Example: Polynomial interpolation



e goal: approximate an unknown function g : [-1,1] — R
e n = 50 noisy raw data points:

o inputs u(l).v ..., u®® are evenly spaced on [~1,1]
o outputs v(7) are noisy observations of g(u(?)

e want to predict unseen data between the 50 points

2 o

-1 -0.5 0 0.5 1
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Solution approach

linear model, square loss

high-order polynomial feature embeddings with normalization

standardization target embedding

K-folds validation with K = 10
two stages of regularization with hyperparameter tuning:

¢ lasso to select important features
¢ ridge to reduce model sensitivity to selected features
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Embeddings

e start with 25th degree polynomial feature embedding:

1
("
. u
2 — _
(u(’:))25
e normalize the éi), o zég):
1

| @ @z

(21" — 256) /(226 — 226)

e standardize targets: y() = (v() — 1) /o
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Unregularized model overfits training data

‘ o Training data o Validation data — Unregularized model‘

-3 I
-1 -0.5 0 0.5 1

u
mean losses in fold 1: 0.188 training, 4,577 validation
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Lasso-regularized models
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Lasso-regularized models

A = 4.64e-05
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Lasso-regularized models

A = 0.000215

-1 -0.5 0 0.5 1
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Lasso-regularized models
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Lasso-regularized models

A = 0.00464
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Lasso-regularized models

A = 0.0215

-1 -0.5 0 0.5 1
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Lasso-regularized models

-0.5

0.5
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Lasso-regularized models

-1 -0.5 0 0.5 1
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Lasso-regularized models

-1 -0.5 0 0.5 1
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Lasso-regularized models

-1 -0.5 0 0.5 1
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Ridge-regularized models with selected features

-1 -0.5 0 0.5 1
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Ridge-regularized models with selected features

A = 7.74e-07

-1 -0.5 0 0.5 1
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Ridge-regularized models with selected features

A = 5.99¢e-06

-1 -0.5 0 0.5 1

24 /33



Ridge-regularized models with selected features

A = 4.64e-05

-1 -0.5 0 0.5 1
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Ridge-regularized models with selected features

A = 0.000359

-1 -0.5 0 0.5 1

24 /33



Ridge-regularized models with selected features

A = 0.00278
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Ridge-regularized models with selected features

A =0.0215
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Ridge-regularized models with selected features
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Ridge-regularized models with selected features

-1 -0.5 0 0.5 1

24 /33



Ridge-regularized models with selected features

-1 -0.5 0 0.5 1
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e ‘linear models’ are linear in 6 and x, can be highly nonlinear in u
e general approach works for many problems

1. embed raw inputs into a large number of candidate features
2. select features via lasso regularization and K-folds validation
3. ‘polish’ model with selected features and ridge regularization

e step 3 is fast (exact formula for square loss and ridge regularization)
e step 2 is slower (lasso regularization requires numerical optimization)

e approach also works for nonlinear models, but usually much slower
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Example: Thermal resistance from thermostat data



e estimate thermal resistance R in 1R1C building model,

Cd7d'£t) _ Tout(t)R_ T q(t) + w(t)

e available measurements (5-minute time step, 6-week duration):

¢ indoor temperature T(t)
o outdoor temperature Toue(t)
o heater thermal power g(t)
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Prior information

e time-average of 1R1C model with T(0) = T(7):

TdT ut(t
_/ _/ [M-l-q(t)-l-w(t)] dt
0
(T T(0) Tow—T
(T(r) - ( )) out LG+ W

T _ R_
— T_ Tout —

97 7R

where § = T J5 a(t)dt and so on for T, Tout, W

e suggests Imear model y ~ 01x1 + rxp with
O target y =@
o features xy =1, xo = T — Tout
© parameters 61 = —w, 6, = 1/R

e to avoid solar effects, embed raw data into nightly averages
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Solution approach

e linear model, square loss
e ridge regularization (including on constant feature)
e K-folds validation with K = 100

e only 2 features, so no need for a feature selection step
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Hyperparameter tuning
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Histograms of parameter estimates at \*
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Final model, retrained on all (training + validation) data

R =244 °C/kW, w = 0.429 kW

T ©

14 \

Heater thermal power (kW)

10 15 20 25 30
Indoor-outdoor temperature difference (°C)
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